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MULTIVARIATE SAMPLING WITH EXPLICIT CORRELATION
INDUCTION FOR SIMULATION AND OPTIMIZATION STUDIES

By

Raymond R. Hill Jr., Ph.D.

The Ohio State University, 1996

Professor Charles H. Reilly, Advisor

Composite distributions based on specified marginal distributions and a speci-

fied Pearson product-moment correlation structure are formed by mixing extreme-

correlation distributions of a multivariate random variable and the joint distribu-

tion under independence. Closed-form expressions are provided for the composi-

tion probabilities for composite distributions for trivariate random variables, and a

simple algorithm for finding composition probabilities in the case of quadravariate

random variables is presented. A linear program provides a general approach for

finding composition probabilities. For all but the extreme correlation structures a

range of composite distributions is provided. Composite distributions are used to

generate coefficients for 1120 two-dimensional knapsack problems based on a vari-

ety of Pearson correlation structures. An equal number of problems is generated

based on Spearman rank correlation structures. The computational results with a

branch-and-bound procedure and a well-known heuristic indicate that the type of
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correlation structure induced (Pearson or Spearman) can affect the performance of

solution procedures. The correlation structure specified matters, as do the values

specified for each correlation term. There is a noticeable interaction between the

correlation structure induced and the constraint slackness settings. Finally, the

interconstraint correlation is found to affect solution procedure performance more

than either of the objective-constraint correlations.
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CHAPTER I

INTRODUCTION

It is easy to envision a customer who requires a long service time at one service

station in a tandem queueing system also requiring long service times at subsequent

stations. Similar arguments apply to products requiring long processing times at

one station in a serial production line. In thinking about optimization problems,

one can imagine a direct, though imperfect, relationship between the cost of a

product and the number of resource units that are needed to produce that product.

Users of simulation techniques need the ability to generate values of multi-

variate random variables with specified dependencies, or population correlation

structure, to accurately simulate real phenomena. This is true for simulations

of serial manufacturing systems, as well as empirical evaluations of optimization

solution methods.

Synthetic optimization problems are (most often) randomly generated opti-

mization problems that provide test cases for empirical evaluations of optimization

solution methods. These studies are of greatest value when the synthetic problems

have characteristics similar to those of problems encountered in practice or a vari-

ety of characteristics so that the range of a solution procedure's performance may
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be determined. In many studies of optimization methods, researchers assume that

all coefficients are mutually independent, but as with other practical simulations,

this independence assumption may not reflect real-life dependencies.

The results of some empirical studies on the performance of algorithms and

heuristics indicate that the correlation between objective function and constraint

coefficients influences the performance of solution methods. Multivariate sampling

would facilitate the generation of values of multivariate random variables with

realistic or prescribed population correlation structures to represent the coefficients

in the objective function and more than one constraint. Such sampling would

lead to a deeper understanding of solution procedure performance when there are

dependencies among the problem coefficients.

The goals of this research are: (1) to develop a methodology for generating

values of multivariate random variables with specified marginal distributions and

a specified population correlation structure, (2) to demonstrate the use of this

methodology in generating synthetic optimization problems, and (3) to conduct

an empirical study to assess the influence of the population correlation structure

on the performance of optimization solution methods.

1.1 Dissertation Format

This dissertation contains two self-contained papers. The first paper, provided here

as Chapter 2, presents a methodology for constructing composite distributions for

multivariate random variables with specified marginal distributions and a specified

correlation structure. The second paper, presented here as Chapter 3, presents the
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results of an empirical study of the influence of population correlation structure

of the coefficients in synthetic two-dimensional knapsack problems on solution

procedure performance.

1.1.1 Overview of Chapter 2

Extreme-correlation distributions are joint distributions in which all pairwise pop-

ulation correlations have either their most positive or their most negative possible

values. These distributions are the building blocks for a class of multivariate

composite distributions. Composite distributions constructed from the extreme-

correlation distributions and the joint distribution under independence form an

even richer class of distributions. Both classes of composite distributions apply

to multivariate discrete and continuous random variables. They facilitate more

realistic simulations of practical systems, such as manufacturing and other tandem

queueing systems, as well as more comprehensive computational experiments on

optimization methods.

1.1.2 Overview of Chapter 3

Chapter 3 presents an empirical study of the effects on solution methods of the

population correlation structure among the coefficient types in the two-dimensional

knapsack problem (2KP). The composite distributions presented in Chapter 2

provide the requisite foundation for multivariate sampling for generating values

of coefficients with specified Pearson product-moment correlation structures for

synthetic 2KPs. Additional instances of 2KPs with specified Spearman rank cor-
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relation structures are also generated using a known sampling technique. A total

of 2240 2KP instances are generated based on two correlation measures, various

population correlation structures (matrices), and four different constraint slackness

settings. All of the problems are solved with a commercially available branch-and-

bound code and a well-known heuristic.

1.2 Contributions of the Research

This research makes two principal contributions. The first is the characteriza-

tion of composite distributions for multivariate random variables. Straightforward

procedures for generating values of multivariate random variables with a speci-

fied population correlation structure make these characterizations an easy way to

induce realistic dependencies in simulated data. The second contribution is an

increased understanding of the effect on solution procedure performance of the

correlation structure among the coefficient types in 2KP instances.

Chapter 2 contains theory providing a foundation for characterizing multivari-

ate composite distributions. More specifically, Chapter 2 presents

" characterizations of extreme-correlation distributions for both discrete and
continuous multivariate random variables,

" methods for characterizing multivariate distributions, based on a specified
Pearson product-moment correlation structure, as a composition of extreme-
correlation distributions and the joint distribution under independence,

* closed-form methods for characterizing composite distributions for trivariate
random variables, and a simple procedure for finding composition probabili-
ties for quadravariate random variables, and

* methods for selecting feasible correlation structures for both trivariate and
quadravariate random variables.
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Chapter 3 demonstrates the practicality of using composite distributions to

induce correlation explicitly among three types of coefficients in 2KP. More specif-

ically, Chapter 3 presents

" an experiment design for investigating solution procedure performance that
takes advantage of multivariate explicit correlation induction, and treats the
population correlation structure and the correlation measure as factors in
the experiment, and

* insights regarding the synergistic effect between population correlation struc-
ture and constraint slackness on both the characteristics of the synthetic 2KP
and the ability of solution procedures to solve the problem.



CHAPTER II

MULTIVARIATE COMPOSITE
DISTRIBUTIONS FOR COEFFICIENTS IN
SYNTHETIC OPTIMIZATION PROBLEMS

2.1 Introduction

This chapter presents a characterization of composite distributions for multivariate

random variables with specified marginal distributions and a specified Pearson

product-moment population correlation structure. A composite distribution for

a multivariate random variable Y = (Y, Y2,..., Y) is a distribution that may

be represented as a convex combination of other valid distributions for Y. The

Pearson product-moment correlation between random variables Y and Y, where

ii4j,

Corr(Y, Y) - E(YY') - E(Y)E(Y) (2.1)(Var (Y)Var (Yj))2 '

is a measure of the strength of the linear relationship between Yj and Yj.

The principal motivation for this research is the generation of synthetic opti-

mization problems, which is too infrequently viewed as an application of multi-

variate sampling. (However, this research is applicable to many other simulation

6



7

applications, e.g., simulations of manufacturing systems.) Synthetic optimization

problems are used to test and compare algorithms and heuristics because of lim-

ited supplies of real-life test problems. A common practice is generating the co-

efficients for these problems under mutual independence. This approach alone

is inadequate when there may be dependencies among the coefficients in real-life

problems. An alternative approach is to induce several structured dependencies

between some types of coefficients to provide a greater variety of test problems,

from easy ones to difficult ones, and a higher degree of realism in the test problems.

The composite distributions described in this chapter facilitate the generation of

synthetic optimization problems with a dependence structure represented by a

Pearson product-moment population correlation matrix.

Some researchers have induced correlation between objective function and con-

straint coefficients in synthetic optimization problems and found that the level

of correlation is related to the performance of solution methods (Martello and

Toth, 1979, 1981, 1988; Balas and Zemel, 1980; Balas and Martin, 1980; Potts

and Van Wassenhove, 1988; Guignard and Rosenwein, 1989; John, 1989; Reilly,

1991; Rushmeier and Nemhauser, 1993; Moore and Reilly, 1993; Amini and Racer,

1994; Cario et al., 1995). The correlations between the coefficients in different

constraints may also be related to solution method performance, but this possi-

bility has only been systematically investigated by Hill (Chapter 3). He uses the

characterizations of multivariate distributions presented in this paper to investi-

gate the effects of interconstraint correlation, as well as those of the correlations

between the objective function and constraint coefficients, on the performance of

standard solution methods on two-dimensional knapsack problems. He observes
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that the interconstraint correlation term has at least as significant a relationship

to solution method performance as the correlations between the objective function

coefficients and the coefficients in either of the constraints.

There are usually an infinite number of ways to characterize a joint distribution

for Y when the marginal distributions for Y, i = 1, 2,..., k, and a population

correlation structure are specified. Composite distributions, and in particular those

whose constituent joint distributions have a simple form, are easy to sample from.

Consequently, attention here is restricted to multivariate composite distributions

that are composed of the joint distribution under independence and the extreme-

correlation distributions, the 2 k- 1 distributions of Y for which Corr(Y, Yj) has

either its most positive or most negative possible value for all i < j < k.

This paper is organized as follows. In §2.2, implicit and explicit correlation in-

duction methods for generating coefficients for synthetic optimization problems are

discussed. Basic concepts for composite distributions for multivariate random vari-

ables are presented in §2.3. Extreme-correlation distributions for multivariate ran-

dom variables are characterized and used in conjunction with the joint distribution

under independence to construct multivariate composite distributions. Composite

distributions for trivariate random variables are constructed using closed-form for-

mulas for the composition probabilities in §2.4. The limitations of extending the

composition probability formulas for trivariate random variables to multivariate
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random variables are discussed in §2.5. A composition weight adjustment tech-

nique for constructing composite distributions for quadravariate random variables

is presented in §2.6. The contributions of this research and areas of further inves-

tigation are summarized in §2.7.

Some of the early results of this research appear in Hill and Reilly (1994).

2.2 Background

How the correlation structure of multivariate random variables is modeled and var-

ied can affect the results and conclusions in computational experiments and other

simulation applications. For certain classes of discrete optimization problems, ran-

domly generated instances with high, positive correlation between objective func-

tion and constraint coefficients are relatively hard to solve with enumerative pro-

cedures. Such results are reported by Martello and Toth (1979, 1988), Balas and

Zemel (1980), and Reilly (1991) for knapsack problems; Balas and Martin (1980)

for capital budgeting problems; Rushmeier and Nemhauser (1993) and Moore and

Reilly (1993) for set covering problems; and Potts and Van Wassenhove (1988,

1992) and John (1989) for scheduling problems. Instances of the generalized as-

signment problem with high, negative correlation between the objective function

and capacity constraint coefficients are relatively hard to solve with enumerative

procedures (Martello and Toth, 1981; Fisher, Jaikumar, and Van Wassenhove,

1986; Guignard and Rosenwein, 1989; Trick, 1992; Mazzola and Neebe, 1993;

Amini and Racer, 1994; Cario et al.,1995).
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In the rest of this section, correlation-induction methods that have been used

to generate coefficients for synthetic optimization problems are discussed

2.2.1 Implicit correlation induction

Moore and Reilly (1993) discuss three ways to generate bivariate random vari-

ables as coefficients for synthetic optimization problems: mutual independence,

implicit correlation induction, and explicit correlation induction. They classify as

implicit correlation induction any generation method for which the parameters of

the method imply the population correlation between two random variables.

The implicit correlation induction method in Martello and Toth (1979), which

has been widely mimicked by others, induces dependence between two random

variables Y1 and Y2, by generating a value for Y and then a value of Y2 = Y +

W, where W is an independently generated noise term. For instance, they let

Y , U{1, 2,... , 100} (i.e., Y has a discrete uniform distribution over the integers

from 1 to 100) and W - U{-10, -9,..., 10} when generating objective function

(Y2) and constraint (Y1) coefficients for knapsack problems. The implied value of

p = Corr(Y, Y2) is above 0.97 in this case. Martello and Toth (1981) let Y2 =

111 - Y + W for generalized assignment problems, and the implied value of p is

below -0.97. Martello and Toth, as well as other authors, call such population

correlation levels "weak." But, it is not clear whether any of these authors knows

the magnitudes of the values of p implied by the parameters used in their problem

generation methods.
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One may change the support of 11 or of W, or multiply either of these random

variables by a constant, and systematically vary the implied population correlation.

Such an approach was used by Cario et al. (1995).

Other implementations of implicit correlation induction include Balas and Zemel

(1980), Balas and Martin (1980), Potts and Van Wassenhove (1988), Guignard and

Rosenwein (1989), John (1989), Rushmeier and Nemhauser (1993), and Amini

and Racer (1994). Balas and Martin (1980) generate capital budgeting problems

with implicitly induced interconstraint correlations, as well as objective function-

constraint correlations.

2.2.2 Explicit correlation induction

According to Moore and Reilly (1993), an explicit correlation induction method is

one where the user specifies the population correlation structure.

Fr6chet (1951) characterized bounds on joint probability distributions for (Y, Y2)

as

H-(yi,Y 2) = max{Fi(Yi) + F 2(y2) - 1,0}, (2.2)

and

H+ (yi, Y2) = min f{Fi(Yi),F2 (Y2)} (2.3)

where Fi(yi) is the cumulative distribution function (cdf) for Y, and F2(y 2) is

the cdf for Y2 . H-(yi, y2) and H+(yl,y2) are, respectively, the minimum- and

maximum-correlation joint cdfs for (Y1, Y2). Frchet shows that

H-(y, y2) < H(y1 ,y 2) 5 H+(y1 ,y 2) (2.4)

for all (yi, y2) and all possible joint distributions H(yi, y2).
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Fr~chet uses the bounding distributions (2.2) and (2.3), along with the joint

distribution under independence, F1 (yi)F 2(Y2), to characterize two classes of com-

posite distributions for (Y1, Y2):

AH-(y,y 2) + (1 - A)H+(y,y 2), 0 < A < 1, (2.5)

and

(1-a-b)Fi(y)F2 (y2)+aH-(y,y 2)+bH+(y,y 2), a,b > 0,a+b< 1. (2.6)

The weights A and (1 - A) in (2.5) and a, b, and (1 - a- b) in (2.6) are referred to

as composition probabilities. Nelsen (1987) also describes composite distributions

(2.6).

A class of joint distributions for (Y1, Y2) is comprehensive if the class includes

the boundary distributions (2.2) and (2.3) and F1(y1 )F 2(y 2) (Devroye, 1986). The

class of composite distributions (2.6) is comprehensive, while the class (2.5) is not.

Extreme mixtures

The composite distributions (2.5) are sometimes referred to as extreme mixtures

because they are composed of just the extreme-correlation distributions for (Y1, Y2),

H-(yl,y 2) and H+(yI,y 2). Suppose p is specified and A = (p+ - p)/(p+ - p-),

where p+ and p- are, respectively, the maximum and minimum possible values of

p. Then there is a unique extreme mixture for (Y1, Y2) for each value of p such that

p- < p < p+. Extreme mixtures are easy to use but cannot generate observations

of (Y, Y2) with Y1 and Y2 independent because extreme mixtures do not form a

comprehensive class of distributions for (Y., Y2). Extreme mixtures apply to both

discrete and continuous random variables.
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Conventional mixtures

The composite distributions (2.6) are sometimes referred to as conventional mix-

tures when either a = 0 or b = 0. Suppose p is specified. Then, a = 0 and

b = p/p+ if p > 0, and a = p/p- and b = 0 if p < 0. Conventional mixtures form

a comprehensive class of distributions for (Y1, Y2), are easy to use, and provide a

unique distribution for all values of p such that p- < p _ p+. However, a conven-

tional mixture cannot generate values of (Y1, Y2) with Y and Y2 uncorrelated but

dependent. Conventional mixtures apply to both discrete and continuous random

variables. Conventional mixtures are also discussed by Schmeiser and Lal (1982)

and Nelsen (1987).

Moore and Reilly (1993) generate set covering problem coefficients based on

conventional mixtures.

Parametric mixtures

For finite discrete random variables Y and Y2, Peterson and Reilly (1993) describe

a special case of the distributions (2.6) which they refer to as parametric mixtures.

Define 0 to be the minimum joint probability for any value (yi,y2) in the

support of (Y1, Y2 ). Let fi(Yi) and f2(Y2) be the pmfs for Y1 and Y2, respectively.

Also let i* = argmini{fi(y1 i)}; j* = argminj{f 2 (y2j)}; and 0+ = f1(y1i*)f2(Y2j*).

Suppose that (p, 0) is a point such that

0 < 0 < 0 + (2.7)
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and

(1 - 0/0+) _< 5 < (I - o/o+)P +.  (2.8)

Suppose also that h+ (y i., Y2j*) = h- (yii , y2j) = 0, where h+ (yi, Y2) and h- (yj, y2)

are the maximum- and minimum-correlation probability mass functions (pmfs) for

(Y1, Y2), respectively. Peterson and Reilly show that Corr(Y, Y2) p and the

minimum joint probability is 0 for the following composite distribution:

(1 - a - b)f1 (yi)f 2 (y2) + ah-(y,y 2) + bh+(y,y 2), (2.9)

where

a = ((1 - O/O+)p + - p) /(p+ - p), (2.10)

and

b = (p- (1 - 0/0+)p - ) /(p + - p-). (2.11)

There are an infinite number of parametric mixtures (2.9) for each value of p

such that p- < p < p+, but a unique parametric mixture for each point (p, 0) that

makes either inequality in (2.8) active. For bivariate discrete random variables,

extreme and conventional mixtures are special cases of parametric mixtures.

Reilly (1991) generates knapsack problems based on parametric mixtures. Yang

(1994) generates knapsack problems and Cario et al. (1995) generate generalized

assignment problems based on parametric mixtures, including extreme mixtures

(2.5) and conventional mixtures.

2.2.3 Explicit rank correlation induction

Iman and Conover (1982) describe a method for generating n samples of a k-variate

random variable Y with specified marginal distributions and a specified Spearman
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rank population correlation structure. Their method shuffles n independently gen-

erated components of a multivariate random variable across k vectors so that the

sample Spearman correlation structure approximates a specified Spearman rank

population correlation structure, M. First generate two matrices R and V such

that R is an (n x k) matrix of van der Waerden scores, randomized within each

of the k columns, and V is an (n x k) matrix of n independent observations of

each of the k random variables. Consider each column of R as n observations of

k random variables and compute T, the corresponding sample rank correlation

matrix. Compute the Choleski factorizations A and Q such that T = AA' and

M = QQ'. Compute

S = R(AQ-i)', (2.12)

which is a transformed matrix of scores. The k columns of n values in S have

a sample rank correlation structure that approximates M. The entries in each

column of V are reordered so that their rankings are the same as the rankings in

the corresponding columns of S. The sample Spearman rank correlation structure

of the shuffled matrix of observations, V, approximates the specified correlation

structure, M.

Hill (Chapter 3) compares the performance of an algorithm and a heuristic on

two-dimensional knapsack problems generated based on composite distributions

with specified Pearson product-moment population correlation structures and with

Iman and Conover's method for the same Spearman rank population correlation

structures.
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2.3 Explicit Correlation Induction for Multivariate Ran-
dom Variables Using Composition

In this section, extreme-correlation distributions for a multivariate random variable

Y are characterized and used to construct composite distributions with a speci-

fied correlation structure. A procedure for generating samples from composite

distributions of multivariate random variables is presented.

2.3.1 Extreme-correlation distributions for Y

Assume there are k random variables, Yg, i = 1, 2,..., k. Each Y has support Si, is

distributed according to fi (yi), and has cdf Fi (yi). Let Y=(Y1, Y2, .. , Y) and y =

(yi, Y2,• .. , Yk) be a value of Y. Let S =S 1 x S2 x--- x Sk be the support of Y. Each

feasible joint distribution for Y, h(y), has a Pearson product-moment correlation

structure whose correlation terms comprise a (k)-vector, p = (P12, P3,.., Pk,k-1),

where pij = Corr(Y, Yj) for all i < j < k.

Let Tij be the set of all feasible bivariate distributions hij(yi, yj) for (Y, Y),

for all i <j < k. Let K +  maxhij{E(YiYj)} and Kj = minhijEPi{E(YYj)}

for all i < j < k. The maximum and minimum values of each pij are

pt = (Kt - E(Y)E(Yj)) / (Var(Y )Var(Y)) 1  (2.13)

and

p . = (K- - E(Y)E (Y.)) / (Var(Y )Var(Y))2 (2.14)

respectively. Peterson (1990) presents a factored transportation problem to find

K + or K- for finite discrete random variables Y and Y. He finds K + with the
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Northwest Corner Rule (NWCR) and uses the Southwest Corner Rule (SWCR) to

find K-. For age i 3

K +  jF-'(u)F-'(u) du (2.15)

and

KF; -1 (u)Fj-'(1 -U) du. (2.16)

Define a correlation point, p = (p12,P13... pk1,k), as the (k) vector of cor-

relation values associated with some h(y). An extreme-correlation point for Y is

a correlation point where either Pij = P+ or pij p- for all i < j < k. Each

extreme-correlation point is associated with a feasible assignment of p1j or po-j

to each Plj, j 2, 3,...,k. So there are 2 k -1 extreme-correlation points for Y.

Denote the extreme-correlation points as qt, t = 1, 2,..., 2k - .

For each extreme-correlation point, define the (2)-vector 6- (612,..., 6k 1),

where

(2.17)
0 if Pjj=pj- .

To determine the components of each vector 6 t, the appropriate values are assigned

to 6 , j = 2, 3,... , k, and then the formula

6f - 1 - 11-5 (2.18)

is used to find the remaining 6f. values. Tables 2.1 and 2.2 characterize the extreme-

correlation points for k = 3 and k = 4, respectively. Tables 2.3 and 2.4 provide

the corresponding values for 6fT.

neral random variable (Y, Y),
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Table 2.1: Extreme-correlation points when k 3

Pj
P12 P13 P23

1 p12  P13 P23

2 12 P13 P233 p-2 p-3 p+

3 1Ip3 I 23

4 p12 p13 P23

Table 2.2: Extreme-correlation points when k 4

P
P12 P13 P14 P23 P24 P34

1 P12 P13 P14 P+ P+4 P34

2p- pl- p+ 2+

3912 /13 /14 /23 P24 /934
p- p+ P + P -

2 P12 135 1-4 P23 P24 P34

12 13 14 23 24 34

6 P12 P13 P14 P23 P24 P34

7 12 P13 P 1-4 P23 P24 P34

8 p12 P13 P14 P23 P24 P34
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Table 2.3: Values of 6 when k = 3.
1,] i~j

f 1,2 1,3 2,3
1 1 0 0
2 0 1 0
3 0 0 1
4 1 1 1

Table 2.4: Values of 6 when k = 4.
1,j i,j

f 1,2 1,3 1,4 2,3 2,4 3,4
1 0 0 0 1 1 1
2 0 0 1 1 0 0
3 0 1 0 0 1 0
4 0 1 1 0 0 1
5 1 0 0 0 0 1
6 1 0 1 0 1 0
7 1 1 0 1 0 0
8 1 1 1 1 1 1
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Define the zero-correlation point as the zero vector of dimension (k) and de-

note it q0 . Also define P to be the convex hull of the correlation points qj, t

0 , 1 ,..., 2 k-1 If p E P, then there exist values Aj > 0, t = 0 , 1 ,..., 2 k- , such

that
2k- 1

p E A S qj, (2.19)
i=O

and
2k-1
E At = 1. (2.20)

t=0

Figure 2.1 depicts an example set P where k = 3. According to Rousseeuw and

Molenberghs (1994), all feasible correlation structures, (P12, P13,P23), for such a

trivariate random variable are contained in an elliptical tetrahedron. P is a proper

subset of this elliptical tetrahedron; the extreme points of P in Figure 2.1 are the

extreme-correlation points qe, t = 1, 2, 3, 4, characterized in Table 2.1 and are the

extreme points of Rousseeuw and Molenberghs' elliptical tetrahedron.

An extreme-correlation distribution for Y is a joint distribution for which either

P = P+ or Pui = Pp, for all i < j < k. Denote the 2 k1- extreme-correlation distri-

butions as ht(y), t = 1, 2,..., 2 k-1 . There is a one-to-one correspondence between

the extreme-correlation points in P and the extreme-correlation distributions of

Y.
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4
+ q 3

P23
2

P23

pP3
qJ

P12 P12  P13

Figure 2.1: Example of P for k 3

2.3.2 Constructing composite distributions

Let
k

ho0(y)-- fI f(yi) (2.21)
i= 1

be the joint distribution of Y under independence. A comprehensive class of

composite distributions for Y is given by:

2 k-ik-1
Q -z= h (Y) h (y) = 1:Athi(y), 1:At=1,,At_>O , W (2.22)

f=0 t=0I

The class Q generalizes the comprehensive class (2.6) of composite distributions

for bivariate random variables introduced by Fr~chet (1951) in the sense that Q

includes each of hi(y), £ = 0,1, . . . , 2k - . It is clear from the definitions of Q
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and P that p E P if and only if there is some joint distribution h(y) E Q whose

correlation structure is given by p. P contains correlation points that correspond

to correlation structures that are expressable as convex combinations of qt, f =

0, 1,..., 2k - l , but does not necessarily contain all feasible correlation structures

for Y, as demonstrated in Rousseeuw and Molenberghs (1994).

Let p E P represent the desired population correlation structure. Constructing

a composite distribution h(y) E Q associated with p E P requires a composition

probability vector, A, that satisfies the following conditions:

2k-1

A + (1 - 6 )p- j < j < k, (2.23)

£=1

2k-1

At = 1, (2.24)
1=0

A _ 0 t = 01 2 k- 1  (2.25)

A composite distribution h(y) E Q with a minimum value of ) is referred to

here as a Type L distribution. In many cases, A0 = 0 for Type L distributions,

meaning ho(y) is not included in the composition. It is easily shown for bivariate

random variables that extreme mixtures are Type L composite distributions (see

the Appendix to this chapter for details).

A composite distribution h(y) E Q with a maximum value of A0 is referred

to here as a Type U distribution. For bivariate random variables, conventional

mixtures are Type U distributions (see the Appendix to this chapter for details).

For any p - P, the corresponding Type L and Type U composite distributions

define a range of composite distributions in Q with the correlation structure p.

While the correlation structure for the distributions within this range of composite
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distributions does not change as A0 changes, the distributions themselves can be

strikingly different. Therefore, A0 may be considered an index for the composite

distributions in Q that are associated with each p E P.

Two examples for bivariate random variables are used to illustrate the range

of possible composite distributions defined by the limiting Type L and Type U

distributions. The first example illustrates how the value of A0 affects the nature

of the pmf for Y for discrete random variables. The second example illustrates a

similar point when Y is continuous.

Example 1 (Hill and Reilly, 1994). Let Y - U{l, 2, 3,4, 5} and let Y2 be a

binomial random variable with 3 independent trials and success probability 0.4.

Suppose that the desired population correlation value is p = 0.6. The pmf shown

in Figure 2.2 is the Type L composite distribution with A0 = 0, A, = 0.1715 and

A2 = 0.8285. The pmf shown in Figure 2.3 is the Type U composite distribution

with Ao0 = 0.3431, A, = 0, A2 = 0.6569. Note in Figure 2.2 that the joint probability

for 7 of 20 members of S, x S 2 is zero, while each member of S, x S2 has positive

probability with the pmf in Figure 2.3. El

Example 2 (Hill and Reilly, 1994). Let Y and Y2 be exponential random

variables with unit mean and p = 0.4. From Page (1965) it is known that p+ = 1.0

and p- = 1 - ir2/6. Figure 2.4 shows 1000 observations based on the Type L

composite distribution with A0 = 0, A, = 0.36, and A2 = 0.64. Figure 2.5 shows

1000 observations based on the Type U composite distribution with A0 o 0.6,

A, = 0, and A2 = 0.4. Including the independent pdf in the composition, as in the

Type U distribution, leads to a greater variety of possible realizations of Y. El
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Y, 0 1 2 3

1 0.1657 0 0.0233 0.0110
2 0.0132 0.1607 0.0261 0
3 0 0.2000 0 0
4 0.0028 0.0713 0.1259 0
5 0.0343 0 0.1127 0.0530

Figure 2.2: Example Type L composite pmf, p 0.6

Y2

Y1 0 1 2 3

1 0.1462 0.0296 0.0198 0.0044
2 0.0254 0.1504 0.0198 0.0044
3 0.0148 0.1610 0.0198 0.0044
4 0.0148 0.0614 0.1194 0.0044
5 0.0148 0.0296 0.1092 0.0464

Figure 2.3: Example Type U composite pmf, p = 0.6
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7

T17 7

Figure 2.4: Type L composite pdf, exponential marginals, p 0.4

7

Y

Figure 2.5: Type U composite pdf, exponential marginals, p 0.4
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Given a valid composition probability vector, the following procedure generates

values of Y based on a composite distribution in Q with the correlation structure

associated with the correlation point p.

Procedure RVAR1

1. Generate U1, U2,...,uki rU(0, 1).

2. If uk+l < A, then for i = 1, 2,..., k,

yj = Fi-i(ui) and go to Step 6.

Otherwise, set m = 1, P = A0 + A,.

3. If uk+1 > F, go to Step 4. Otherwise, go to Step 5.

4. n-m+<,P-- F+Am. Goto Step 3.

5. Generate y with ul based on gn(y).

(a) yi F1
1 (ui).

(b) Yj F-i(1 + ui(25i jn- 1) - 6T), i= 2, 3,...1,2 - i

6. Return y.

RVAR1 uses k + 1 random numbers per observation of Y. One random number,

Uk+i, is used to select a constituent distribution of the composite distribution.

Another random number, u1 , is used to generate a value of Y, and the 6? values

determine whether ui or 1 - ui is used for sampling values of Y2 , Y3,... , Yk for any

extreme-correlation distribution. The remaining k - 1 random numbers are used

only for independent sampling, i.e., if Uk+1 _< A0. RVAR1 is designed to facilitate

synchronized sampling, which is useful in many computational experiments. An

alternative to RVAR1 is a more efficient procedure that generates values of Y using

an expected number of 2 + (k - 1)A0 random numbers per observation, rather than

the constant k + 1 random numbers.
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2.4 Explicit Correlation Induction For Trivariate Random
Variables

This section introduces closed-form formulas for the unique composition proba-

bilities for Type L distributions for trivariate random variables. These formulas

are extended to other composite distributions, including Type U composite dis-

tributions. Throughout this section, it is assumed that k = 3, Y (Y1, Y 2,Y 3),

y = (yi, y2, y3), and fi(yi) > 0 for all yi, i= 1,2,3.

2.4.1 Type L composite distributions for trivariate random

variables

Define j (pt+ + p-)/ 2 for i 1,2, j i + 1,3. Let pE P, A0 = 0, and

1 + F ? r 3  (2 f .- 1 2(pp-  )

1 =1 j=I+l (+-f-
A = 4 t3, --- 1, 2,3, 4. (2.26)

Consider the sets

T 1 tip) = 1 + E (2 i - 1) 2 (p  = 0" f- , f 1,2134, (2.27)
i= +i+i -0, ,2,3P - Pj I

and refer to Figure 2.1. All convex combinations of q2, q3, and, q 4 belong to T1.

Similarly, all convex combinations of q1 , q3 , and, q 4 belong to T2, of qj, q 2, and, q4

belong to T3 and of ql, q2, and, q3 belong to T4 . The next proposition and the

following corollary establish the relationship between the points in P and the

formulas (2.26).
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Proposition 2.1 For any random variable Y,

2 3

1 EE (2'j -1) 2 ( + - -  >0, f=1,2,3,4, (2.28)
i=1 j=i+1 i i

are valid inequalities for P.

Proof: The set P contains all correlation points that are convex combinations of

the extreme-correlation points, ql, q2, q3, and q 4 . It may be verified that t1 (ql) >

0, t2 (q2) > 0, t3 (q3) > 0, and t4 (q 4) > 0. Let q be any convex combination of

ql, q2, q3, and q 4. Then tl(qt) _> 0, t 2(t) > 0, t3 (q) 0, and t 4(ql) > 0. El

Corollary 2.1 For any random variable Y, the valid inequalities (2.28) are facets

of P.

Proof: P has dimension 3. Each T, f - 1, 2, 3, 4, has dimension 2. It follows

from Proposition 2.1 and the definition of the sets T that each T is a face of P

and therefore a facet of P. El

The following result establishes that there is a unique solution to (2.23)-(2.24)

for any p - P and any value of A0 such that 0 < A0 K 1.

Proposition 2.2 For any value of A0, such that 0 < AO 1, and any p E P,

there is a unique solution to (2.23)-(2.24).

Proof: For any value of A0 such that 0 < AO 1, the equations (2.23)-(2.24)

reduce to:

Alp+ + A2P-2 + A3P- + A4P+ P12 (2.29)
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Alp-3 + A2P+ + A pp + Ap 3  P1 (2.30)

Alp +A 2P + A3P+ + AA P23 (2.31)

A,+A 2 + A3 +A 4  1-Ao. (2.32)

In matrix terms this can be written as Ax = b, where

(P12 P12 P 2 P12

p13  P13 (2.33)A J + - - + (233
P23 P23 P23 P23)1 1 1 1

x (A,, A2, A3,A 4 )T, and b = (p12, p13, p23,1 - Ao)T . If det(A) $ 0, then A-'

exists and x = A-lb is the unique solution. Performing elementary row and

column operations on A yields the following matrix:

0 0 P1 2 P12 PI12 P12

0 P1-3 - P13 0 P1-3P+ (2.34)0 P 23 - p23 p2-3- p23 0 •
1 0 0 0

It follows that det(A) det(A') -2(p--p) Since p- <
12 12 1P3-- 13)(23-- 23) S inc j

and p+ > 0 for all i < j, det(A) < 0. Fl

The next two propositions establish that the values for Aj, f = 1, 2, 3, 4, given in

(2.26) and A0 = 0 satisfy (2.23)-(2.25), and therefore constitute unique composition

probabilities.

Proposition 2.3 The values for Aj, f = 1, 2,3,4, given in (2.26) and Ao = 0,

satisfy (2.23).

Proof. Without loss of generality, consider equation (2.23) for any i < j < k:

4 4 4E[6W\43+(1-6i)A'P; 1 = Y:iAP 3+ E(1-6f )A'
f=1 E=1 f=1



30

4 1 :2 31 ZX=+i(26i% - 1 - "

= PP3~e 4 1+

4j [16fr2 1:32(pij pi)1
S  + l~j=i+ t pp- 3 

[+ 2(p, 1-pij) 12(pij-pi)1
=2pt ±3 2 p,-j[ 3

= - P ++ Pijl

2 ± (p - p) 2 pt -

2(p -p,9

(p + p -p7 1(2- - 21ij)

2 (pP - ps)-

(p + p,-) + 2(pj -

2
= Pij + Pij ) Pij
= Pp3

Proposition 2.4 For any p E P, the values of At, f 1, 2,3,4, in (2.26) and

Proof: Let p (E P. By Proposition 2.1, the numerator of At, f 1, 2, 3,4, is

nonnegative. Therefore, At ! 0 for f 1, 2,3,4. Consider E4 1 At. For any i < j,

4 2 ( P i j p -0 1

(2 -i' (2.35)

p - + i

so that E~iA f=1 1/4 =1. El

The next two propositions establish more results regarding Type L distribu-

tions. The first result provides the conditions under which a Type L distribution

exists for p =qo E P, and the second result indicates that there are many Type L

distributions with A= 0 if there is such a distribution for p qo E P.
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Proposition 2.5 There always exists a Type L composite distribution for p

qo E P for which Ao = 0 whenever
2 3 -+

(26 -j +'S S(6 - 1 )-2- +p <1 g= 1,2,3,4. (2.36)

i=1 j=i+l 
Puj - Pij

Proof: Let p = (0, 0, 0) and A0 = 0. Condition (2.36) ensures that At > 0, t

1,2,3,4. r-

For many distributions used in practical applications, condition (2.36) is easily

satisfied. For instance, if every marginal distribution is uniform, then pt + p = 0

for all i < j _ 3.

Proposition 2.6 If there is a Type L distribution with A0 = 0 associated with the

correlation point qo E P, then there is a Type L distribution with Ao = 0 associated

with every p G P.

Proof: Suppose there is a Type L distribution with A0 = 0 associated with q0 G P.

Then there exist at, f = 0, 1, 2,3,4, with a0 = 0 such that

4

q= at qt, (2.37)

4t=1 at=1, and at>0, f=1,2,3,4.

Select any p E P. There exists a composition probability vector, A, such that

4
p = E Atqt

f=0
4

= Aoqo + Aeqt
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4 4

SAoYaeq + E £Aq

4

- (Aoaj + AI)qt
1=1

4

f--1

where A' (Aoat + At), f= 1, 2,3,4. Since

4 4 4 4

ZAj = -(Aoaj + Aj) = Ao E ±j + i At = Ao + (1 - Ao) 1, (2.38)
i=i =i 1=1 1=1

one can set A) = 0 and there is a Type L composite distribution associated with

pEP. El

Additional composition probabilities for p E P such that A0 _ 0 are presented

in the next subsection.

2.4.2 Other composite distributions for trivariate random
variables

Let p c P) 2 32p

:= I - a 2+i( -1) "---- , f = 1,2,3,4, (2.39)
a di = j = i + i P tj - ij

and

0 < yo , y* =min f4 (2.40)

The following three propositions establish that a composite distribution for Y with

feasible correlation structure p is given by

4

h(y) 5'hi(y), (2.41)
1=0
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where

1 - -yo ± J?1rZ =i+ (26f - 1) 2(pij -(l-,yo)Pij)1~ ~ ~ ~ ~~~~. - 7 - zz_,-~ jP_p

4 , f = 1,2,3,4. (2.42)

Proposition 2.7 Let p E P. The values of -yt, t = 1, 2, 3, 4, given in (2.42), and

-yo, given in (2.40), satisfy (2.23).

Proof. Without loss of generality, consider equation (2.23) for any i < j < k:

4 4 4

[6fJ Ye P + 1- 6ij jYRP = -YO(O) + (i 63-+Yep- )z (1 -

e=1 Z=1 e=1

4 -yo +±J:'1 r' 2+((26 - (I} -y) Pi)14= 2-= -1) /

4 i - )

= t be l-voji I p3

Z=l

2( o -2 ,-)

2(p, -ps )

= p.3 t

Proposition 2.8 If Ao0  0 and Ae > 0 for g 1, 2,3, 4, then c4 > 0 for g

1,2,3,4.

Proof:" For any specified marginals, de is a constant for all population correlation

structures. Suppose that A0 =0 and Ae > 0, g 1, 2, 3, 4. Consider any Ae for the
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correlation point p (0, 0, 0). Then,

A 1 + 3 (26j- 1)2pij 2 3 (26t - 1)2 ij .41
=4 ( -p+p - Z p+_ (2.43)
2=1 j=i+1 P 3 i=1 j=i+l Pij - Pij

1I dt > 0.
4

So d1 > 0, = 1, 2, 3, 4.E

Proposition 2.9 If Ao = 0 and At > 0,t = 1,2,3,4, then the values of -Yt, t

0, 1,2,3,4, given by (2.40) and (2.42) satisfy (2.24) and (2.25).

Proof: Suppose that A0 = 0 and At > 0, t = 1, 2, 3,4. For every f, f = 1, 2,3,4,

0 < -Y _< -- (2.44)
dt

It follows that

'yodR < 4Ae

2 3 (26 _ 1)2pi " 2 3 (265j - 1)2(pij - pij)
YI-- Z 1 -- ± --- <: ++ E Y- -

=1 =+l 1=1 j=iP - P-j - P

2 3 (26{ - 1)2 (pij - (1 - yo)pij) > 0

i=1 j=i+l Pi 3
4 ye > 0.

Therefore, -y > 0, t = 1, 2, 3, 4. Similar to arguments in the proof of Proposi-

tion 2.4 , E4= 1 -y= 1 yo so that _Y0 + yj1 Y
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Note that the composition probability formula (2.42) reduces to the Type L

formula (2.26) when 7o z 0. The value of -yo may be thought of as an index for

the composite distributions for a specified p E P. For any p E P, if At > 0 for

= 1, 2, 3, 4, with at least one Aj = 0, then -* = 0. In this case, the unique

distribution for p is both Type L and Type U. The next result shows that the

composite distribution is Type U when yo = -*.

Proposition 2.10 When yo = -", composite distributions (2.41) are Type U dis-

tributions.

Proof: Let -yo =-y*. Then using the composition probability formula (2.42) yields

7 = (YO,71,'Y2,'y3,4) (*,AI- -d, A2 -
2-d 2,A 3 -

2 -d 3, A4 - 2-d 4). (2.45)
4' 4 4 4

From Propositions 2.7 and 2.9, the vector y represents a feasible set of composition

probabilities. Since -yo =-y*, -yi = 0 for at least one i, i = 1, 2, 3,4. Without loss

of generality, assume that yi = 0. Then -y satisfies (2.23)-(2.25) which reduce to

70+'Y72+Y3+74 - 1, (2.46)
'Y2P + -3P12 + 74P12 p°2, (2.47)

72P1
+
3 + 73P 13 + 74P +  = P3, (2.48)

72P3+73P+ +Y4P+  = P03, (2.49)

70, 72,73,74 > 0. (2.50)

The dual of the linear program (LP) with the objective of maximizing A0 subject

to constraints (2.46)-(2.50) is

Minimize w, + p12W 2 + p13w 3 + P23W4 (2.51)
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subject to

W1 > 1 (2.52)

w1 + P12w2 + plW 3 + p23w 4 > 01 (2.53)

w1 + p12w2 + p-3w3 + p+3w 4 > 0, (2.54)

w, + p12w 2 + p+W3 + Pw3W 4 > 0. (2.55)

The complementary slackness conditions (CSC) are

(w, - l)-Yo = 0, (2.56)

(W1 + p12w2 + pAW3 + PW4)-Y2  = 0, (2.57)

(W 1 + P12W2 + pW 3 + P23W4 )y = 0, (2.58)

(wi + p +w 2 + p +w 3 ± p2w 4)Y4 = 0. (2.59)

If yo -y" > 0, then the CSC imply w, = 1. If yo = -" = 0, then w, < 1. In either

case, the constraints (2.53)-(2.55) and the CSC (2.57)-(2.59) are satisfied if

p12 P13 P23 1

A P1-2 P13 P2+ (2.60)

[P12 P13 P23]

is nonsingular. AT is a square submatrix of the nonsingular matrix

1 1 1 11

D= 0 P1-2 P1-2 P12 (2.61)0 P13 P 13 P13
0 p2 P23 P23J

derived from (2.46)-(2.49). Because D - ' exists, (AT) - ' exists and A must be

nonsingular. Since A is nonsingular, (2.45) is the composition probability vector

for a Type U composite distribution. Dl
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2.4.3 Feasible correlation points for trivariate random vari-
ables

A correlation structure for a trivariate random variable has three interdependent

correlation terms. The dependency among the three correlation terms means that

specifying values for any two correlation terms limits the range of feasible values

for the remaining correlation term (Olkin, 1981).

Assume Y = (Y1 , Y2, Y3) with P13 = P13 and P23 p P. Equations (2.26) can

be solved for the remaining correlation term, P12. Two equations provide upper

bounds and two equations provide lower bounds on the feasible range of P12. The

range for p12 is given by

FP1, P'11P23) (P12 -- P2) + P/12 P12 ! 'q(P12, P13, P023) (P+2 - PT) +t P512, (2.62)

2 2

where

I( /2(P P 2(p23 -P23)

Tp1 2 , pP2 3 ) -max + + -- (2.63)
13P13 2 P3

and 2(p13 P1).2 (p23 - P23)}

(p12,p13,p m3) = min ± + - )+ .... . (2.64)
f. P13 P13 P23 - P23 J

Example 3: Suppose that Y = (Y1,Y } 2, Y3) and each of the Y,i = 1, 2, 3 is a nega-

tive exponential random variable with P12 = 0.6 and P1a= 0.65 specified. Applying

(2.62)-(2.64) gives the range 0.25 < P23 _ 0.95 to ensure p = (P12, P13, P23) E P.m]
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2.5 Extensions for General Multivariate Random Variables

In this section, limitations of extending the composition probability formulas (2.26)

and (2.42) for trivariate random variables to general multivariate random variables

are discussed. Examples are provided to demonstrate these limitations.

A convenient approach to finding composition probabilities for Type L com-

posite distributions when k > 4 might involve an extended form of (2.26) with
1 k-1 2 -- 1)2(

At = 2k-1 , f= 1,2,..., 2 k-1, (2.65)

and A0 = 0. Proposition 2.3 may be extended to prove that for k > 4 values based

on (2.65) satisfy (2.23), and it may be shown that )--i=' Aj = 1 if A0 = 0. For

some p E P, the values suggested by (2.65) are valid composition probabilities.

However, for some p E P, the values suggested by (2.65) violate (2.25).

Example 4. Let Y = (Y1, Y2, Y3, Y4), where Y, i = 1, 2, 3, 4, are identical

discrete uniform random variables so that p+ = 1.0 = -p- for all i < j _< 4.

Suppose that the desired correlation matrix is
/ 1 0 p+/4 p 14/16

- 0 1 P23 (2.66)P1 /4 p s/8 1 p/8
p1/ 1 6  0 p-4/8 1

Suppose that Ao = 0. Then, the Aj values suggested by (2.65) are: A1  13/128;

A2, A4 =15/128; A3 = 21/128; A5 = 9/128; A6 = 11/128; A7 = 25/128; and A8 =

19/128. In this case, the application of (2.65) yields valid composition probabilities.

El
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Example 5. Recall Example 4. Suppose that, instead of R 1, the desired

correlation matrix is represented by a correlation point nearer to an extreme-

correlation point. For instance, suppose the correlation matrix is

/1 0.9 0.9 0.*9\
R 0.9 1 0.9 0.9 (2.67)
R 0.9 0.9 1 0.9

0.9 0.9 0.9 1

Let A0 = 0. The Aj values suggested by (2.65) are: A1, A4, A6 , A 7 = 1/8; A2, A3, A5

-1/10; and A8 = 8/10. Solving an LP with the objective of minimizing A0 to obtain

a feasible A for a Type L composite distribution yields: A1, A4, A6 , A7 = 1/40;

Ao, A2 , A3 , A5 = 0; and A8 = 9/10. E

The following generalization of Propositions 2.5 and 2.6 indicate when the

formula (2.65) will provide valid compostion probabilities.

Proposition 2.11 There always exists a Type L composite distribution for p

q0 E P for which A0 = 0 whenever
k-1k

S (2 6f t1 ) --- J " 1 --= 1,2, - 1  (2.68)
i=1 j=i+l iu -ij

Proof: Let p = (0, 0,..., 0) be the (k)-component zero vector and A0 = 0. Con-

dition (2.68) ensures that A, > 0, t = 1, 2,... 12 k1 . .l

Proposition 2.12 If there is a Type L distribution with A0 = 0 associated with the

correlation point qo E P, then there is a Type L distribution with A0 = 0 associated

with every p E P.
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Table 2.5: Upper Bound on A, as k increases

Number of Number of Maximum
k pis qj At

2 1 2 1.0000
3 3 4 1.0000
4 6 8 0.8750
5 10 16 0.6875
6 15 32 0.5000

Proof: The proof of this proposition is virtually identical to the proof of Propo-

sition 2.6. El

The formula (2.65) does not always yield valid composition probabilities be-

cause, for k > 3, the numerators of (2.65) are not facets of P. Further, the number

of extreme-correlation points qt, 2 k-1, grows faster with k than with the number of

Pi, (). This means the denominator of (2.65) grows faster than the numerator,

and the maximum value of any Aj decreases with increasing k as seen in Table 2.5.

For example, when k > 4 and p = qf, for any i = 1, 2,..., 2k-, it does not follow

from application of (2.65) that j = 1 as is expected.

Although the composition probabilities (2.26) are not readily extendable to dis-

tributions of general multivariate random variables, the values obtained through

application of (2.65) can be used in conjunction with a composition weight adjust-

ment method to provide valid composition probabilities when k = 4.
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2.6 Composite Distributions for Quadravariate Random
Variables

In this section composite distributions for quadravariate random variables are con-

structed by adjusting the composition weights obtained from (2.65). The adjust-

ment process is described first and then a procedure implementing the adjustment

process is presented.

2.6.1 Adjusting Composition Weight Vectors

Assume for k > 4 and population correlation structure p E P, that a vector

of composition weights A from (2.65) is not nonnegative (i.e., A violates (2.25)).

One way to obtain a vector of composition probabilities is to adjust A to satisfy

(2.23)-(2.25).

Let i* = argmax{At}, and j = argmin{At}. Suppose that A3 , < 0 so that

(2.25) is violated. Assume that A0 will not be changed. One can partition

{A, A2,..., A8} by defining index sets L and R such that the indices in L identify

elements of A that decrease in value while indices in R identify elements of X that

increase in value. Sets L and R effectively partition the rows in Table 2.4 in such

a way that for any column in the table, an equal number of Is (and thus Os) are

in L and R. Clearly, this requires ILl = IRI = 4. Any offsetting adjustments to

A based on the index sets L and R produce an alternative A that still satisfies

(2.23)-(2.24). To ensure that the alternative A also satisfies (2.25), it must be that

j* G R and that each adjustment be at least -Ap.
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Define 6'1. = (6' 2, 613, 614) for each vector 6 ' and define the degree of agreement

of 6 . as
4

D(6t.) 6(1 - - f), = 1,2,..., 8. (2.69)
j=2

The degree of agreement function (2.69) provides a convenient method of deter-

mining L and R:

L = {iID(6'.) {0,2}, i = 1,2, ... ,8}, (2.70)

and

R - {ili 0 L}. (2.71)

Conveniently, for k = 4, L = (A1 , A4, A6, A7) and R = (A2, A3, A5, A8 ), or vice versa.

Given a vector A from (2.65) that violates (2.25), one may use Procedure

ADJUST to raise Ap to zero.

Procedure ADJUST

1. Let i* = argmax{Ae}, j*= arg mini{Xe}, and E =-Aj.

2. Define L and R according to (2.70) and (2.71).
3.For f = 1, 2,...,18, do

(a) If ELthenAj=Aj-6

(b) IftERthenAt=Aj+

4. Return.

In some cases, the adjusted set of weights are the same as would be obtained

using a LP to find a Type L distribution.

Example 6. Recall Example 5. Procedure ADJUST returns: A,, A4, Ar, A7

1/40; A2 , A3, A5 = 0; and A8 = 9/10 with A0 = 0 based on c = 1/10. El

If A violates (2.25) after ADJUST, then we conclude that p Z P. This does

not imply that p does not represent a valid correlation structure, but rather that p

may not be expressed as a convex combination of the points qt, i = 0, 1,..., 2 k- z
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Example 7. Consider normal random variables, Y, i = 1, 2, 3,4 and

p = (0.959, 0.979,-0.904, 0.951,-0.819,-0.879). (2.72)

The determinant of the corresponding correlation matrix is 0.000492; so it repre-

sents a valid correlation structure. Using (2.65) yields: yj = -0.097625, '72

0.100875, -y3 = 0.129125, 74 = -0.111875, 75 = 0.109125, '76 = -0.101875,

77 = 0.811345, and 78 = 0.160875. Then argmin{7 } = 4, 2 E R, and 4 E L. Since

'74] > '721, ADJUST does not return a valid set of probability weights. Therefore,

p 0 P, a fact easily verified using a LP. El

A very similar process may be applied to the construction of non-Type L com-

posite distributions, i.e., composite distributions with A0 > 0. Extending formula

(2.42) to the quadravariate case gives:

1 __YO+ 3 1 4 (2f- 1) 2(p  ( 1- - °)fiij )

1 7o± ~ j(26f. - t j-- =I 7=+l t £=1,2, ...,8, (2.73)

for 0 < '70 - 7*. The formula for computing '* for trivariate random variables

given in §2.5 may be applied to each of the trivariate marginal distributions of Y

to determine 7* when k = 4.

The trivariate marginal random variables for Y are (Y1, Y2, Y3), (Y1, Y2, Y4),

(Y, Y3 , Y4), and (Y2 , Y 3, Y4). Each of the four trivariate marginal distributions for

a quadravariate random variable is a valid trivariate distribution for three of the

four components of Y. For a specified p, let y*)' 7(2), ''3), and 7(*4) be the respective

'7* values for each trivariate marginal random variable and

7* min{7(*), 7(2), 7(3), 7(4)}- (2.74)
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Let 0 < -y _ -y*. Whenever (2.73) returns a -y vector that violates (2.25) ap-

ply Procedure ADJUST to adjust the vector of composition weights leaving 70

unchanged.

Example 8. Let Y = (Y1, Y2, Y3 , Y4), where each Yi, i 1, 2, 3,4, is negative

exponential with arbitrary means and let

1 -0.25 -0.30 -0.15
-0.25 1 0.50 0.30 (2.75)

R3 - -0.30 0.50 1 0.17

-0.15 0.30 0.17 1

be the desired correlation matrix. For the trivariate margin (Y, Y2, 13), 7) 0.45,

for (Y1,Y 2,Y 4), 72) = 0.60, for (Y1,Y 3,Y4), -7(3) = 0.0338, and for (Y2 ,Y 3 ,Y 4 ),

7(*4) = 0.37 so that 7" = 0.0338. Using 'yo 0.0338, application of (2.73) yields:

'71 0.3746, 72 = 0.2383, -y3 = 0.1319, -4= -0.0054, y5 = 0.1076, -y6 = 0.0493,

-y7 =0.0645 and y8 = 0.0054. Procedure ADJUST returns 7o = 0.0338, 'Y =

0.37996, 72 = 0.2329, y3 = 0.1265, y5 = 0.1022, 76 = 0.0547, 77 = 0.0699 and

74, -y8 = 0.0, based on E = 0.0054. These results agree with LP results. El

As explained and demonstrated before, if - violates (2.25) after ADJUST is

executed, then we conclude that p 0 P.

2.6.2 Choosing feasible quadravariate correlation points

It is useful to be able to choose feasible correlation structures p E P for a

quadravariate random variable. A distribution for a quadravariate random vari-

able has six correlation terms and each term is associated with two of the four

trivariate marginal distributions. The value specified for any Pij, i < j < 4, must

be feasible in both trivariate marginal distributions involving Pij. For example,
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any value for P23 must be feasible with respect to the trivariate marginal distri-

butions involving both (Y, Y2, Y3) and (Y2, Y3 , Y4). Determining the feasible range

for any Pij involves applying (2.62)-(2.64) to the appropriate trivariate marginal

distributions.

Example 9. Let Y = (Y1, Y2, Y3, Y4 ) where each Y is negative exponential.

Suppose that P12 = 0.6, P13 = 0.65, and P14 = -0.25 have been specified. The

remaining correlation terms must satisfy

0.25 < P23 < 0.95, (2.76)

-0.6397 < P24 < 0.15, (2.77)

-0.6 < P34 < 0.1 (2.78)

Ranges (2.76)-(2.78) are necessary but not sufficient to completely specify p. Once

either of P23, P24, or P34 are specified the remaining two ranges must be recom-

puted. El

2.7 Summary and Discussion

This research has produced a characterization of composite distributions for mul-

tivariate random variables with a specified Pearson product-moment correlation

structure using the extreme-correlation distributions and the joint distribution un-

der independence. Type L and Type U distributions represent special types of

composite distributions with extreme levels of independent sampling and they de-

fine a range of possible composite distributions for a specified correlation structure.
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Explicit correlation induction based on composite distributions opens up many

new avenues of research, both theoretical and empirical, concerning multivariate

sampling and the influence of correlation structure in many types of systems. In fu-

ture theoretical work, closed-form composition probabilities for higher dimensional

random variables could be developed. One could also develop composite distribu-

tions based on other measures of dependency, such as Spearman rank correlation

or positive regression dependence. There are many empirical research opportuni-

ties too. For instance, in the next chapter, two-dimensional knapsack problems are

generated based on multivariate composite distributions and the rank correlation

induction method of Iman and Conover (1982) to examine the influence of different

types of correlation structures on the performance of solution procedures. Com-

putational experiments should also be conducted on other types of optimization

problems. In addition, composite distributions could be used in the simulation of

tandem queueing and manufacturing systems. More analytically based applica-

tions could address issues in the design of experiments or variance reduction for

simulation applications involving multiple random number streams and multiple

measures of performance.
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Appendix - Type L and Type U distributions for bivariate
random variables

Type L Distributions

Consider the following LP for determining mixing probabilities for a Type L

distribution for a bivariate random variable:

Min

Z = A0  (2.79)

subject to
p-Al + p+A2 p0, (2.80)
A0 + A, + A2 =1, (2.81)

A0 ,A 1,A 2  0. (2.82)

A basic feasible solution to (2.80)-(2.82) with A0  0 is given by:

A, P + -1 pO
1 >1(_p

P- p p+ P+ ](1

- (P+-P°)/(P+- ) >0, (2.83)- (p0 _ p-)/(p+ _ p-) _

which consists of the composition probabilities given in §2.2.1. The complementary

dual solution for extreme mixtures is dual feasible since

(0,0) _ [ -I - I ( 1 ) (0,0, 0) < (1,0,0). (2.84)

Therefore, the composition probabilities given in (2.83) and A0 = 0 are the mixing

probabilities for a Type L composite distribution.
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Type U Distributions

Now consider the following LP for determining composition probabilities for a

Type U distribution for a bivariate random variable:

Max

Z = o0  (2.85)

subject to (2.80)-(2.82). Suppose 0 < p0 < p+. A basic feasible solution to (2.80)-

(2.82) with A, = 0 is

=o -/p Ip + 0] p 01

= p/p+ -
(1 O/P+ ) >0. (2.86)

The complementary dual solution is dual feasible because

1 /p+  1 0 p 1 P - P + 10 0) _ (1,0,0). (2.87)
1, /P 0 )(1 1 1,P

Therefore, the composition probabilities in (2.86) and A > 0 are the mixing prob-

abilities for a Type U distribution when 0 < p0 < p+. A similar argument may be

used to show that A0 = 1 - pO/p, A, = pO/p-, and A2 = 0 is an optimal solution

to (2.85), (2.80)-(2.82) when p- < po < 0.
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CHAPTER III

THE EFFECTS OF COEFFICIENT
CORRELATION STRUCTURE IN

TWO-DIMENSIONAL KNAPSACK
PROBLEMS ON SOLUTION PROCEDURE

PERFORMANCE

3.1 Introduction

This chapter presents an empirical study that examines the influence of correlation

structure between the coefficients in synthetic optimization problems on solution

procedure performance. One reason for empirical testing of solution procedures

is to overcome the limitations inherent in deductive, analytical techniques like

worst-case and average-case performance analyses, which often require very strong

assumptions to ensure mathematical tractability of the results. Hooker (1994) sees

the ability of deductive approaches in their current state "inadequate to its task,"
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and he views computational testing as the only currently viable alternative. Un-

derstanding the influence of correlation structure between the types of coefficients

on solution procedure performance is an example where current deductive analysis

methods are inadequate.

In many empirical studies of optimization algorithms or heuristics, randomly

generated, or synthetic, problems are assumed to be representative of real-world

problem instances. However, defining a truly representative set of problems is

difficult. The usual practice is to systematically vary the values of each factor

across some range, and thereby include a variety of problem instances that may

include instances that resemble real problem instances. Any inferences drawn

for the entire set of test problems are assumed to apply to problem instances

encountered in practice.

For certain classes of optimization problems, such as the multidimensional

knapsack problem (MKP), and in particular the two-dimensional knapsack prob-

lem (2KP) studied here, the test problem coefficients should be generated by sam-

pling from joint distributions of multivariate random variables. In this study, 2KP

coefficients are generated based on a variety of correlation structures. In addition,

the type of correlation measure (Pearson product-moment and Spearman rank

correlation measures) used as the basis for generating the coefficients is varied.

Solution procedure performance results are then examined to assess how correla-

tion structure influences the performance of an algorithm and a heuristic.

Some computational studies have been conducted on test problems in which

correlation is induced between the objective function and constraint coefficients.

The absolute correlation level has been linked to performance differences for solu-
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tion procedures. By generating test problems based on a multivariate distribution,

the effect of the correlation between the coefficients in different constraints, as

well as the correlations between the objective and constraint coefficients, may be

assessed.

In §3.2, studies involving synthetic optimization test problems with correla-

tion induced among the coefficient types are reviewed and past research involving

the MKP is summarized. The test problem generation methodologies used in the

present study are discussed in §3.3, and the design of the experiment and the

analysis methods used in this study are presented in §3.4. Differences in sample

distributions due to the correlation induction method are examined in §3.5. The

influence of each type of correlation measure on solution procedure performance

is discussed in §3.6. Computational results for CPLEX, a branch-and-bound pro-

cedure, are discussed in §3.7, while §3.8 provides a similar analysis of the results

for the heuristic by Toyoda (1975). There is a brief discussion in §3.9 of how test

problem generation parameters influence the size of the LP-IP gap in the synthetic

test problems. Finally, §3.10 contains a discussion and concluding remarks.

3.2 Background

This section begins with an introduction to MKP, a class of problems in which 2KP

is a special case. A review of previous computational studies involving synthetic

optimization problems with correlation induced among the coefficient types follows

in §3.2.2. Results of some previous MKP studies are summarized in §3.2.3.
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3.2.1 The multidimensional knapsack problem

MKP is a 0-1 programming problem of the following form:

Maximize
n

Z = E cjxj (3.1)
j=1

subject to
n

Yaijxj < b i= 1,2,...,m, (3.2)
j=1

xj = 0 or 1 j =1, 2'...,In, (3.3)

where all c3 > 0 and all aij > 0. Additionally, at least one aij > 0 for each j.

This general form applies to a wide variety of optimization applications, including

capital budgeting problems. A special case of MKP is 2KP, where m = 2.

MKP is known to be NP-hard (Frieze and Clarke, 1984), meaning that there

is no known polynomial-time solution algorithm for MKP. As n increases, exact

solution methods, such as branch-and-bound, may require large commitments of

computing resources. Consequently, heuristics are often used to find solutions

that are close to the optimum at a fraction of the computational cost of an exact

algorithm. Much of the recent research on MKP investigates improved heuristics.

3.2.2 Empirical studies involving problems with correlated
coefficients

Many studies have examined the effect of correlation between objective function

and constraint coefficients in synthetic optimization problems on the performance

of solution procedures. A common, or "legacy," aspect of these studies is the test

problem generation methods employed, which mimic the test problem generation
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methods used in earlier studies, such as those by Martello and Toth (1979, 1981).

Martello and Toth (1979, 1988) and Balas and Zemel (1980) study knapsack solu-

tion procedures, while Potts and Van Wassenhove (1988, 1992) and John (1989)

study solution procedures for scheduling problems. Yet, all use nearly the same

test problem generation method and all report significant performance degradation

of solution methods which they attribute to higher positive population correlation

between objective function and constraint coefficients. Martello and Toth (1981),

Fisher, Jaikumar, and Van Wassenhove (1986), Guignard and Rosenwein (1989),

Trick (1992), Mazzola and Neebe (1993) and Amini and Racer (1994) report wors-

ening solution procedure performance due to stronger, negative population corre-

lation levels between the objective function and capacity constraint coefficients in

the generalized assignment problem (GAP).

Interestingly, the correlation levels induced are not quantified in the studies

cited above. Common parameter settings for the generation methods, such as those

in Martello and Toth (1979), induce "weak" population correlation above 0.97,

while other settings, such as those in Martello and Toth (1981), induce population

correlation below -0.97. These generation methods are called "implicit correlation

induction" methods by Moore and Reilly (1993) because the correlation levels

induced are determined, or implied, by the parameters specified for the problem

generation method. Any desired variation in the population correlation requires

changing either the parameter settings or the form of the univariate marginal

distributions.
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The correlation level between two types of coefficients may be explicitly induced

and varied across the range of feasible correlation values. Moore and Reilly (1993)

use composition to induce a specified population correlation level between ob-

jective function coefficients and constraint matrix column sums in weighted set

covering problems. Reilly (1991) and Yang (1994) induce correlation in the 0-1

knapsack problem and Pollock (1992) induces correlation in the weighted set cov-

ering problem by generating coefficients based on various composite probability

mass functions (pmfs). Each of these four studies shows that increasing positive

correlation between the objective function and constraint coefficients degrades so-

lution procedure performance. Cario et al. (1995) induce various correlation levels

between objective function and capacity constraint coefficients in the GAP and

find that solution performance degrades with decreasing correlation between the

objective function and constraint coefficients. In addition, Cario et al. find that

GAP instances generated under explicit correlation induction are more challenging

than those generated under implicit correlation induction.

3.2.3 Some empirical studies involving MKP

Table 3.1 summarizes the design of various studies of the performance of heuris-

tics for MKP. The current study is shown for comparison purposes. Past studies

of MKP heuristics indicate that problem size, the distribution of the constraint

coefficients, and the method used to determine the right-hand side coefficients (or

constraint slackness) influence heuristic performance.
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Table 3.1: Factors and Measures Used in Previous Empirical Studies of MKP
Heuristics

Problems Factors Measures
Study Authors Generated m n S D E Tm Err OpS Iter
Toyoda (1975) 904 0 0 0 0
Loulou & Michaelides (1979) 2250 0 o 0 0 0
Balas & Martin (1980) 41 0 a 0 a a
Pirkul (1987) 230 a 0 a a 0 0
Zanakis (1977) 135 0 a a 0 0
Fr6ville & Plateau(1993) Lots 0 a o 0 a 0
Fr6ville & Plateau(1994) 610 o a 0 a o 0 o
Current study 2240 0 a 0 a
m = number of constraints
n number of decision variables
S = slackness of constraints
D = distribution of constraint coefficients
E= population correlation induced between problem coefficients
Tm = CPU time required
Err = measure of relative error between heuristic and optimal solution value
OpS = number of problems solved to optimality
Iter = number of iterations

Pirkul (1987) and Balas and Martin (1980) implicitly induce population corre-

lation between the objective function and constraint coefficients for each variable

of approximately 0.66. In addition, they induce correlations of about 0.43 be-

tween the coefficients in every pair of constraints. Generally, the performance of

the heuristics worsens as the objective function-constraint correlations increase.

However, there is no discussion of how their results might be influenced by the

interconstraint correlations. Fr~ville & Plateau(1994) generate objective function

coefficients and right-hand side values as functions of independently generated con-

straint coefficients. They conclude that independent problems are easier to solve

than the problems with correlation.
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3.3 The Test Problem Generation Methods

Two multivariate correlation induction methods, each associated with a different

correlation measure, are used in this study. Both methods require the user to

specify the univariate marginal distributions and the correlation structure. The

composition method discussed in Hill (Chapter 2) is used to induce specified Pear-

son product-moment population correlation structures, and the method presented

in Iman and Conover (1982) is used to approximately induce specified sample

Spearman rank correlation structures. Both methods are used to generate values

of trivariate random variables to represent the coefficients (cj, aij, a2j) for each

variable xj in 2KP.

3.3.1 Pearson product-moment-based correlation induction
method

The Pearson product-moment correlation coefficient is a measure of the linear de-

pendence between two random variables. Hill (Chapter 2) shows how to construct a

multivariate composite distribution based on a specified Pearson product-moment

population correlation structure, using the 2
k - 1 extreme- correlation distributions

and the joint distribution under independence. For a k-variate random variable,

Y, each extreme-correlation distribution is a joint distribution for which each cor-

relation term is at either the extreme positive or extreme negative level. The

2 k- 1 extreme-correlation distributions are denoted ht(y), f = 1, 2,..., 2 k- 1, and

the joint distribution under independence is denoted ho(y).
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Chapter 2 provides formulas for computing composition probabilities, A,, f -

0, 1,2, 3, 4, based on a specified correlation structure for a trivariate random vari-

able. A joint distribution with the specified correlation structure is the composite

distribution
4

h(y) E Ah(y). (3.4)
i=0

The value of Aj, i = 0, 1, 2, 3, 4, represents the relative frequency of sampling based

on ht(y). When A0 is at its minimum value, the composite distribution is called a

Type L distribution. When A) is at its maximum value, the composite distribution

is called a Type U distribution. The Type L and Type U distributions define a

range of composite distributions with a specified population correlation structure.

3.3.2 Spearman rank correlation-based correlation induc-
tion method

The Spearman rank correlation coefficient is a measure of the monotonic depen-

dency between two random variables. Let M be a specified correlation matrix.

The method of Iman and Conover (1982) may be used to induce a Spearman rank

correlation structure, given by M, among a set of random variables.

Suppose n observations of k random variables with correlation structure M

is required. First generate two matrices, R and V such that R is an (n x k)

matrix of van der Waerden scores, randomized within each of the k columns, and

V is an (n x k) matrix of n independent observations of each of the k random

variables. Consider each column of R as n observations of k random variables

and compute T, the corresponding sample rank correlation matrix. Compute the
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Choleski factorizations A and Q such that T = AA' and M = QQ'. Compute

S = R(AQ-1)', (3.5)

which is a transformed matrix of scores. The k columns of n values in S have

a sample rank correlation structure that approximates M. The entries in each

column of V are reordered so that their rankings are the same as the rankings in

the corresponding columns of S. The sample Spearman rank correlation structure

of the shuffled matrix of observations, V, approximates the specified correlation

structure, M.

This method is applicable for any marginal distributions. However, since this

method involves computing Choleski factorizations, matrix inverses, and ranking of

the data, the method becomes more computationally intensive as k or n increases.

3.4 The Experiment Design and Analysis Methods

The goal of this study is to gain a deeper understanding of how test problem gen-

eration methods influence the performance of solution procedures. This is not an

advocacy study for a particular solution procedure or an experiment on state-of-

the-art solution methods for MKP (2KP). Rather, this is an investigation into how

the performance of representative techniques, the branch-and-bound code CPLEX

and the heuristic by Toyoda (1975), are affected by the correlation structure be-

tween the coefficient types, and by other test problem characteristics.

Let A 1 - U{1, 2,... ,40} be the random variable representing the values of

the coefficients in the first constraint, A 2 - U{1, 2,..., 15} be the random vari-

able representing the values of the coefficients in the second constraint, and C -
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U{1, 2,... , 100} be the random variable representing the values of the objective

function coefficients in 2KP. Different distributions for A' and A 2 virtually guaran-

tee that both constraints in each 2KP instance are different. Suppose the distribu-

tions of A 1 and A2 are identical. Then PA1A2 E [-1, 1], and for each 2KP instance

generated with PA1A2 = 1, the coefficients for each variable would be identical in

both constraints.

The three correlation terms in the correlation structure of 2KP are PCA',

PcA2, and PA1A2 with p = (pCA, PCA2, PAI A2). When referring to a particu-

lar correlation measure, P (PCA', A2, PAPA2) denotes the Pearson product-

moment correlation structure while a Spearman rank correlation structure is de-

noted S =(pCA' PsA2, PAI A2).

3.4.1 Definition of the experiment design settings

Three problem generation parameters are varied in this experiment: the correlation

structure between the sets of problem coefficients, the constraint slackness, and the

correlation measure (Pearson or Spearman). It is well established that problem

size influences solution procedure performance, so problem size is held constant

with two constraints (i.e., the 2KP) and 100 variables.

For the marginal distributions previously defined for C, A 1, and A 2, the ranges

of feasible Pearson correlation levels for each correlation term are:

PCA e [-0.99997, 0.99997] (3.6)

PCA2 E [-0.99773, 0.99773] (3.7)

and pAlA2 E [-0.99752, 0.99752]. (3.8)
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The population correlation structures are varied by systematically varying each

correlation term. Five equally-spaced correlation values across the feasible range

for each correlation term yields 125 potential correlation structures. However, 80

of these combinations yield would-be correlation matrices that are not positive

semi-definite. Table 3.2 lists the 45 feasible correlation structures; Figure 3.1

is a 3-dimensional plot of the feasible correlation structures. For each feasible

correlation structure, there is a composite joint distribution (3.4). For the Pearson

correlation induction method, the joint distribution for 34 of these 45 feasible

correlation structures is expressible only as a Type L composite distribution with

A0 = 0. For each correlation structure in Table 3.2 marked with a e, there are

composite distributions with A0 > 0 in addition to a Type L distribution. For

these correlation structures, both the Type L and Type U forms of the composite

distribution are used in the experiment.

A "slackness" measure for constraint i, Si, is defined as the ratio of the right-

hand side coefficient in constraint i to the sum of the coefficients in that constraint.

Low slackness values give "tight" constraints and high slackness values give "loose"

constraints. Constraints are "mixed" if both low and high slackness values are

specified for the same test problem. Table 3.3 summarizes the slackness levels

used in the studies cited previously. Two levels of slackness are examined in this

study: Si = 0.30, 0.70, i = 1, 2. Each of the four possible settings of S, and S2

is referred to as a constraint slackness setting. Since the marginal distribution

of A' differs from the marginal distribution of A2 , then (S1, S2) = (0.30, 0.70) is

considered to be a different slackness setting than (Si, S2) = (0.70,0.30).
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Table 3.2: Experiment Design Correlation Structures

Correlation Values Correlation Values
Number PCA' PCA2 PA1A2 Number PCA1 PCA2 PA1A2

1 0.99997 0.99773 0.99752 24 * -0.49999 0.00000 0.00000
2 0.49999 0.49887 0.99752 25 -0.99997 0.00000 0.00000
3 0.00000 0.00000 0.99752 26 0.49999 -0.49887 0.00000
4 -0.49999 -0.49887 0.99752 27 * 0.00000 -0.49887 0.00000
5 -0.99997 -0.99773 0.99752 28 -0.49999 -0.49887 0.00000
6 0.49999 0.99773 0.49876 29 0.00000 -0.99773 0.00000
7 0.99997 0.49887 0.49876 30 -0.49999 0.99773 -0.49876
8 * 0.49999 0.49887 0.49876 31 0.00000 0.49887 -0.49876
9 0.00000 0.49887 0.49876 32 o -0.49999 0.49887 -0.49876
10 0.49999 0.00000 0.49876 33 -0.99997 0.49887 -0.49876
11 0 0.00000 0.00000 0.49876 34 0.49999 0.00000 -0.49876
12 -0.49999 0.00000 0.49876 35 o 0.00000 0.00000 -0.49876
13 0.00000 -0.49887 0.49876 36 -0.49999 0.00000 -0.49876
14 o -0.49999 -0.49887 0.49876 37 0.99997 -0.49887 -0.49876
15 -0.99997 -0.49887 0.49876 38 o 0.49999 -0.49887 -0.49876
16 -0.49999 -0.99773 0.49876 39 0.00000 -0.49887 -0.49876
17 0.00000 0.99773 0.00000 40 0.49999 -0.99773 -0.49876
18 0.49999 0.49887 0.00000 41 -0.99997 0.99773 -0.99752
19 0 0.00000 0.49887 0.00000 42 -0.49999 0.49887 -0.99752
20 -0.49999 0.49887 0.00000 43 0.00000 0.00000 -0.99752
21 0.99997 0.00000 0.00000 44 0.49999 -0.49887 -0.99752
22 o 0.49999 0.00000 0.00000 45 0.99997 -0.99773 -0.99752
23 o 0.00000 0.00000 0.00000

Table 3.3: Slackness Settings From Previous MKP studies

Study Authors Slackness Setting Si
Toyoda S 0.67
Loulou & Michaelides bi = 1 V i 1, 2, ... , m

Balas & Martin Si ,,- U(0.5, 0.9)

Pirkul Si = 0.50
Zanakis Si = 0.30, 0.50, 0.90
Fr~ville & Plateau(1993) S = 0.25, 0.50, 0.75
Fr~ville & Plateau(1994) Si = 0.25, 0.50, 0.75
Current study Si = 0.30, 0.70
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Figure 3.1: Three Dimensional Plot of Experiment Design Correlation Structures

One purpose for this study is to examine how the correlation measure (Pearson

or Spearman) used affects solution procedure performance. For each specified cor-

relation structure and constraint slackness setting combination, five test problems

are generated using both the Pearson correlation induction method (i.e., compo-

sition) and the Spearman correlation induction method (i.e., Iman and Conover's

method). Random numbers are not synchronized since the shuffling involved in

Iman and Conover's method would undermine any synchronization.

Each combination of correlation structure, constraint slackness setting, and cor-

relation measure forms an experiment design point. With 45 correlation structures,

four constraint slackness settings, two correlation measures, and five replications
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for each design point, 1800 optimization test problems are generated. Additionally,

the 11 correlation structures in Table 3.2 that may be represented by a Type U

composite distribution provide an additional 440 test problems, for a total of 2240

2KP test problems generated for this study.

A representative algorithm and heuristic were chosen based on availability and

general acceptance of the procedures. CPLEX from CPLEX Optimization, Inc.,

is contained in many commercially available packages and is available as a stan-

dalone product (see review by Saltzman, 1994). The mixed-integer optimizer in

CPLEX, version 2.1, was selected and utilized in a depth-first search, branch-

and-bound mode. Many of the studies involving heuristics for MKP benchmark to

Toyoda's (1975) heuristic. Hence, Toyoda's heuristic was chosen as a representative

heuristic. Hereafter, these procedures are referred to as CPLEX and TOYODA,

respectively.

There are a variety of performance measures for assessing solution procedure

effectiveness and efficiency. Typical performance measures for branch-and-bound

procedures include CPU time, iteration count, or the number of nodes enumerated

in the branch-and-bound tree. The three measures are clearly related to one an-

other. The number of nodes is used in this study and is referred to as NODES.

Typical measures for heuristics include CPU time, iteration count, or relative error.

This study uses the relative error denoted as REL, where

REL = 100 x (ZIP-ZH) (3.9)
Zip

where ZH is the heuristic solution value and Zjp is the optimal (or best known)

integer solution value for the 2KP.
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The size of the LP-IP gap in an optimization problem is often viewed as a

factor influencing the performance of solution procedures (Chang and Shepardson,

1982). In this study, the influence of the factors in the experiment on the size of

the LP-IP gap is briefly examined.

3.4.2 Methods for analyzing results

Two non-parametric statistical tests, the sign test and the Kruskal-Wallis (KW)

test, are used to analyze the data from the experiment. These tests are summarized

below; additional details are found in Conover (1980).

The sign test is useful for establishing whether observations from one popu-

lation tend to differ in magnitude when compared to observations from another

population. Let X(1) and X(2),i = 1,2,...,n, be n observations from two pop-

ulations paired in some logical fashion, and let di = XP ) -X( 2),i = 1, 2,... ,n,

be the differences between the observations. If there is no difference in magnitude

between the populations, the probability of a positive sign on each di follows the

binomial distribution with p = 0.5. Therefore, the null and alternative hypotheses

are:

H0 : Pr(+) = Pr(-)

H: Pr(+) $ Pr(-)

where Pr(+) and Pr(-) are, respectively, the probabilities of positive and negative

signs on each di. The test statistic, T 1, is the total number of positive dis, ignoring

ties. The decision rule is to reject HO at the a level of significance if the probability
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of observing T1 positive dis under a true null hypothesis is less than a. The primary

use of the sign test in this study is to test whether there is a difference in solution

procedure performance due to the correlation measure.

The KW test is a rank test for differences among the means in m popula-

tions. Let XP),i - 1,2,...,nj, j 1,2,...,m, be the ith observation from the

jth population and R(XJi)),i = 1,2,... ,nj,j = 1,2,. .. ,m, be the overall rank of

each observation among all N = L1 nj observations. The null and alternative

hypotheses are:

H0  : All m population distribution functions have identical means,

H1  : The m population distribution functions do not have identical means.

Define Rj = =l R(Xji)), J 1,2,... , m. The test statistic T2 for the KW

test is

12 = - ____ (3.10)
S2  

4

where
N -1 R(X 0) 2I N 4 + ) 2  (3.11)

The decision rule is to reject HO at the a level of significance if T2 exceeds the

1 - a quantile of the chi-square distribution with m - 1 degrees of freedom. The

KW test is used in this study to test whether or not there are solution procedure

performance differences due to either the correlation structure or the constraint

slackness setting.
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In addition to the sign and KW tests, regression models are constructed to

quantify the relationships between the experiment design parameters and each

performance measure. The models constructed based on the 2KP experiment were

developed using a stepwise regression procedure to obtain the regression model

that maximizes the value of the coefficient of determination, R2.

3.5 Comparing Samples From The Correlation Induction
Methods

One motivation for this study is to examine whether solution procedure perfor-

mance is affected by differences in the form of the underlying multivariate distri-

bution of coefficient values. A simple experiment with a bivariate random vari-

able provides some insight into the differences in the form of the underlying dis-

tribution associated with each correlation measure. (The correlation structure

also affects the form of a joint distribution, even for a fixed correlation mea-

sure.) Assume that Y and Y2 are each discrete uniform random variables where

Y, ,- U(1,2,...,20),Y2 , U(1,2,.. .,10), and Corr(Y1, Y2) = 0.49876. The sam-

ple joint distributions that result from 100,000 observations from the generation

method for each correlation measure are shown in Figures 3.2 and 3.3. To simplify

the generation of data based on the Spearman measure, the 100,000 observations

came from 1000 replications of 100 observations each.

Figure 3.2 contains a sample pmf (multiplied by 10000) for Pearson product-

moment correlation induction using a Type U distribution. There is a minimal

probability in each cell and a concentration of probability along the upper left to
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lower right "diagonal" of cells. This concentration of probability is characteristic

of compositions involving extreme-correlation distributions (Devroye, 1986). The

concentration of probability along the diagonal is minimized (maximized) and the

minimum probability in each cell is maximized (minimized) with Type U (Type L)

distributions (Hill and Reilly, 1994). Suppose 100,000 observations of (Y1, Y2) were

generated based on a Type L distribution. Then, all of the observations would

be concentrated on the upper left to lower right and lower left to upper right

diagonals. The cells off these diagonals would have probability zero.

Figure 3.3 contains a sample pmf (multiplied by 10000) for Spearman rank cor-

relation induction. There is a wide band of probability along the main "diagonal"

discussed for Figure 3.2; several cells have very small probability. Generally, the

probability in the cells drops off as one looks at cells further and further away from

the main diagonal.

For each of the 2240 problems generated for this study sample Pearson product-

moment and Spearman rank correlation values were computed. Table 3.4 summa-

rizes these sample correlations by correlation induction method and by the value

specified for each correlation term. The data in Table 3.4 indicates that both cor-

relation induction methods effectively generate data with the specified correlation

structure. The standard errors of the average sample correlation values under the

Spearman induction method are generally smaller than the corresponding standard

errors under the Pearson induction method. This phenomenon may be explained

by recognizing the different approach to inducing correlation that these two variate-
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Y2
Y1  1 2 3 4 5 6 7 8 9 10
1 276 23 26 25 26 23 24 26 25 24
2 279 22 24 25 24 26 25 24 25 23
3 25 279 23 25 24 24 29 24 24 28
4 25 285 23 23 26 26 26 24 27 27
5 25 27 275 27 25 28 23 24 23 25
6 23 27 264 26 26 24 25 22 27 25
7 25 27 25 268 27 26 24 25 25 23
8 26 24 24 268 26 25 25 23 23 23
9 26 25 23 26 275 24 27 27 27 27
10 25 24 26 22 278 23 27 23 26 23
11 23 23 26 24 25 273 27 26 22 24
12 26 26 23 26 26 277 25 28 23 24
13 22 27 26 26 26 25 272 24 26 26
14 26 27 23 26 25 26 277 27 24 26
15 28 25 26 22 23 27 27 276 24 25
16 26 26 23 25 27 23 22 277 23 25
17 24 25 26 24 21 26 25 26 274 26
18 27 24 27 28 27 23 23 27 274 23
19 28 24 27 25 26 26 22 25 24 282
20 25 26 28 27 24 23 26 26 24 271

Note: Proportions multiplied by 10000

Figure 3.2: Sample Distributional Form From Pearson Induction Method,
p = 0.49876
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Y2
Y1  1 2 3 4 5 6 7 8 9 10
1 239 105 24 17 24 38 48 2 1 1
2 78 102 72 46 61 61 55 12 7 1
3 93 88 94 31 24 22 18 54 68 4
4 77 26 42 68 44 28 17 92 89 16
5 50 12 25 114 109 60 18 53 49 16
6 72 29 33 123 89 58 15 38 19 7
7 110 47 49 96 53 56 36 42 7 7
8 98 33 54 66 32 75 68 52 7 25
9 56 37 57 61 29 57 84 73 9 46

10 42 55 38 45 44 38 84 81 18 53
11 28 77 25 32 61 35 84 73 30 53
12 11 80 28 44 71 40 60 54 45 60
13 8 68 67 77 86 37 39 32 46 46
14 13 61 114 84 67 27 26 35 49 21
15 11 52 125 36 39 38 45 58 85 15
16 3 26 77 15 35 78 50 55 118 33
17 3 21 18 4 52 86 55 54 155 54
18 8 48 10 4 29 74 96 80 129 38
19 2 17 48 19 32 84 74 47 59 118
20 1 1 15 6 5 14 39 13 10 391

Note: Proportions multiplied by 10000

Figure 3.3: Sample Distributional Form From Spearman Induction Method,
p = 0.49876
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Table 3.4: Sample Correlations by Target and Induction Type

Target Number Induction Method
Correlation of Pearson Spearman

Value Problems Mean Std Error Mean Std Error
0.99997 100 0.98968 0.00007 0.99914 0.00002
0.49999 280 0.49524 0.00645 0.47747 0.00102

PCA1 0.00000 360 -0.00328 0.00668 0.00068 0.00078
-0.49999 280 -0.49764 0.00656 -0.47494 0.00107
-0.99997 100 -0.98967 0.00005 -0.99737 0.00004
0.99773 100 0.98780 0.00003 0.99436 0.00009
0.49887 280 0.48964 0.00658 0.47724 0.00123

PCA2 0.00000 360 -0.01640 0.00679 0.00350 0.00092
-0.49887 280 -0.49967 0.00625 -0.47052 0.00122
-0.99773 100 -0.98775 0.00003 -0.98762 0.00014
0.99752 100 0.98756 0.00003 0.99318 0.00010
0.49876 280 0.48105 0.00614 0.47468 0.00140

PAIA2 0.00000 360 -0.00254 0.00693 0.00515 0.00110
-0.49876 280 -0.49975 0.00626 -0.46844 0.00138
-0.99752 100 -0.98762 0.00003 -0.98564 0.00017

generation methods use. The Pearson induction method samples from a composite

distribution with a specified Pearson product-moment population correlation struc-

ture, while the Spearman induction method (Iman and Conover, 1982) targets a

specified sample rank correlation structure.

Table 3.5 summarizes Spearman sample correlations for the 2KP coefficients

generated with the Pearson method, and vice versa. Consider the mean values

reported in Table 3.5. The Pearson method effectively generates data with the

specified Spearman rank correlation structure. However, the Spearman method

is less effective at generating data with a specified Pearson product-moment cor-

relation structure. In both cases, standard errors are small, and better for the

problems generated with the Spearman method.
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Table 3.5: Sample Correlations by Target, Method, and Alternate Measure

Target Number Pearson Method Spearman Method
Correlation of Spearman Value Pearson Value

Value Problems Mean Std Error Mean Std Error
0.99997 100 0.99943 0.00010 0.98218 0.00046
0.49999 280 0.50093 0.00651 0.46857 0.00120

PCA1 0.00000 360 -0.00311 0.00669 -0.00047 0.00100
-0.49999 280 -0.50085 0.00656 -0.46815 0.00130
-0.99997 100 -0.99773 0.00008 -0.98219 0.00035
0.99773 100 0.99698 0.00005 0.97821 0.00047
0.49887 280 0.49608 0.00667 0.46831 0.00140

PCA2 0.00000 360 -0.01349 0.00680 -0.00002 0.00108
-0.49887 280 -0.49948 0.00624 -0.46805 0.00138
-0.99773 100 -0.99039 0.00011 -0.97792 0.00053
0.99752 100 0.99692 0.00003 0.97691 0.00050
0.49876 280 0.48805 0.00618 0.46546 0.00146

PA1A2 0.00000 360 0.00172 0.00690 0.00135 0.00119
-0.49876 280 -0.49782 0.00629 -0.46719 0.00149
-0.99752 100 -0.98949 0.00011 -0.97687 0.00047
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Table 3.6: Performance Measure Averages by Correlation Measure

Performance Mean Performance Measure
Measure Pearson Spearman
NODES 2337.50 3748.83
REL 0.77 1.50

Table 3.7: Results of Sign Test on Performance Measures

Performance Total Total Acceptance
Measure d1 0 d (> Region p-value
NODES 1111 354 (522,588) < 0.0001
REL 1095 759 (515,580) < 0.0001

3.6 Influence of Population Correlation Measure

Table 3.6 summarizes the results for each performance measure by population cor-

relation measure. The test problems generated based on Spearman rank correlation

require more branch-and-bound nodes with CPLEX and have larger relative errors

with the TOYODA heuristic than the problems generated based on the Pearson

correlation induction method.

Suppose the data are separated by correlation measure (i.e., by induction

method) and then paired by design point and replication number to develop the

vector of differences used in a sign test. Table 3.7 provides the sign test results

for each performance measure and the a = 0.05 acceptance regions. These results

indicate that test problems based on the Spearman correlation measure require

more NODES by CPLEX and have a larger REL for TOYODA.
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A sign test was applied to the data associated with each of the 45 population

correlation structures listed in Table 3.2. Table 3.8 provides the p-values associated

with each of these 45 tests. An a

below 0.05, 28 tests for NODES data and 21 for REL data. For all tests significant

at the a = 0.05 level, problems based on the Spearman induction method required

either more NODES or REL was higher. Within the REL column of Table 3.8 the

*s tend to be associated with pcA1 and pCA2 values above 0.4, while there is no

such obvious pattern to the *s within the NODES column.

Table 3.9 provides sign test results by Type L and Type U distributions for the

eleven correlation structures permitting both types of composite distributions. An

asterisk (*) indicates those cases where there is a significant difference in perfor-

mance between problems generated based on the Pearson measure and problems

based on the Spearman measure for an a = 0.05 significance level. Test prob-

lems based on the Pearson measure with a Type L distribution are more likely

to produce results different from their Spearman measure counterparts (i.e., less

NODES, larger REL value) than those test problems with a Type U distribution.

This phenomenom is observed because a Type U distribution more closely resem-

bles the underlying distribution for the Spearman correlation induction method

than does a Type L distribution.

sterisk (*) highlights those tests with p-values
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Table 3.8: Sign Test Results On Each Correlation Structure

Correlation Values NODES REL

PCAI PCA2 PA1A2 p-value
t  p-valuet

0.99997 0.99773 0.99752 0.0835 0.0059
0.49999 0.49887 0.99752 0.0059 * 0.0577
0.00000 0.00000 0.99752 0.2403 0.6762
-0.49999 -0.49887 0.99752 0.0013 * 0.4073
-0.99997 -0.99773 0.99752 0.0577 0.1250
0.49999 0.99773 0.49876 0.1796 0.0013 *

0.99997 0.49887 0.49876 < 0.0001 * < 0.0001 *

0.49999 0.49887 0.49876 0.0011 * 0.2148
0.00000 0.49887 0.49876 0.0207 * 0.1316
0.49999 0.00000 0.49876 0.0059 * 0.0013
0.00000 0.00000 0.49876 0.0011 * 0.9459
-0.49999 0.00000 0.49876 0.4119 0.4119
0.00000 -0.49887 0.49876 0.0002 * 0.5881
-0.49999 -0.49887 0.49876 0.6821 0.0541
-0.99997 -0.49887 0.49876 0.4119 0.0245
-0.49999 -0.99773 0.49876 0.1316 0.0577
0.00000 0.99773 0.00000 0.0835 0.0002
0.49999 0.49887 0.00000 0.0013 * 0.1316
0.00000 0.49887 0.00000 < 0.0001 * 0.0003 *

-0.49999 0.49887 0.00000 0.0207 * 0.0013 *

0.99997 0.00000 0.00000 0.1316 0.0002 *

0.49999 0.00000 0.00000 < 0.0001 * 0.0083 *

0.00000 0.00000 0.00000 0.0192 * 0.4373
-0.49999 0.00000 0.00000 0.3746 0.0769
-0.99997 0.00000 0.00000 0.0022 * 0.1316
0.49999 -0.49887 0.00000 0.1316 0.0059
0.00000 -0.49887 0.00000 0.0192 * 0.5627
-0.49999 -0.49887 0.00000 0.9423 0.2517
0.00000 -0.99773 0.00000 < 0.0001 * 0.2517
-0.49999 0.99773 -0.49876 0.0096 * 0.0577
0.00000 0.49887 -0.49876 0.0013 * 0.0002 *

-0.49999 0.49887 -0.49876 0.0403 * 0.0001 *

-0.99997 0.49887 -0.49876 0.0577 0.0059 *

0.49999 0.00000 -0.49876 0.0002 * 0.0002 *

0.00000 0.00000 -0.49876 0.0192 * 0.5627
-0.49999 0.00000 -0.49876 0.0577 * 0.1316
0.99997 -0.49887 -0.49876 0.0013 * 0.0013 *

0.49999 -0.49887 -0.49876 0.0032 * < 0.0001 *

0.00000 -0.49887 -0.49876 0.8684 0.5881
0.49999 -0.99773 -0.49876 0.0002 * 0.0002 *

-0.99997 0.99773 -0.99752 0.1316 0.0059 *

-0.49999 0.49887 -0.99752 0.0002 * < 0.0001 *

0.00000 0.00000 -0.99752 0.1316 0.4119
0.49999 -0.49887 -0.99752 0.0002 * 0.0013
0.99997 -0.99773 -0.99752 0.0004 * 0.1316

f Null hypothesis on no difference
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Table 3,9: Sign Test Results For Type L Versus Type U Distributions

p-values
Correlation Values NODES REL

PCA' PCA2 PA1A2 Type L Type U Type L Type U
0.49999 0.49887 0.49876 0.9940 * 0.9793 * 0.0577 0.7483
0.49999 0 0 0.9987 * 0.9998 * 0.0002 * 0.0588
0.49999 -0.49887 -0.49876 0.9940 * 0.9423 0.0000 * 0.0577

0 0.49887 0 0.9987 * 0.9940 * 0.0013 * 0.0577
0 0 0.49876 0.9999 * 0.7483 0.6762 0.9793
0 0 0 0.9940 * 0.7483 0.0577 0.9423
0 0 -0.49876 0.9423 0.9423 0.4783 0.4119
0 -0.49887 0 0.9940 * 0.7483 0.4119 0.7483

-0.49999 0.49887 -0.49876 0.9987 * 0.4119 0.0000 * 0.1316
-0.49999 0 0 0.6762 0.5881 0.0207 * 0.5881
-0.49999 -0.49887 0.49876 0.8684 0.0835 0.5000 0.0207

Based on the results in this study, it appears that the choice of correlation

measure influences the performance of solution procedures on synthetic test prob-

lems. The next issue is whether the population correlation structure and constraint

slackness settings, for test problems generated based on each type of correlation

measure, influence solution procedure performance. CPLEX performance is exam-

ined first, followed by similar analyses of TOYODA performance.

3.7 Analysis of CPLEX performance

In this section, the influence of the population correlation structure and constraint

slackness settings on CPLEX performance is examined. Two regression models

are constructed to summarize the effects of correlation structure and constraint

slackness on CPLEX performance.
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3.7.1 Correlation structure influence

Tables 3.10 and 3.11 summarize CPLEX results for Pearson and Spearman prob-

lems, respectively. An artificial limit of 250,000 NODES was imposed on CPLEX

processing. The rightmost columns in Tables 3.10 and 3.11 indicate how many,

if any, problems were not solved to optimality in this study due to this limit.

The number of CPLEX NODES varies greatly as the population correlation struc-

ture changes.

A KW test was conducted on the data grouped by population correlation struc-

ture to test for a difference in average NODES due to correlation structure. The

KW test statistics of 180.95 for Pearson correlation problems and 135.59 for Spear-

man correlation problems equate to p-values of less than 1.0 x 10- 0 for each test.

Clearly, there is a CPLEX performance difference due to correlation structure.

Independent sampling is represented by p = (0, 0, 0), Type U in Table 3.10.

Independent sampling is a generally accepted method of generating test problems,

however, these results suggest that generating test problems with independent

sampling only provides little information about the full range of test problem diffi-

culty that is observed with a more systematic problem generation scheme involving

correlation induction. In fact, independent sampling seems to provide information

only about median performance. To appreciate the CPLEX performance variation

possible with different correlation structures, one need only scan down the columns

of Tables 3.10 and 3.11 and notice the range in average NODES, the corresponding

standard errors, and the drastic difference in average NODES between the first
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Table 3.10: CPLEX Results using Pearson Correlation Induction

Correlation Values Mean Standard Not
Type PrAl PIA2 P IA2 NODES Error Solved

L 0 -0.49887 -0.49876 30284.1 12347.01 2
L 0.99997 -0.99773 -0.99752 27947.5 11937.36 1
L -0.99997 0.99773 -0.99752 25250.4 12153.85 1
L -0.99997 -0.99773 0.99752 21507.3 8969.49 1
U 0.49999 -0.49887 -0.49876 3749.9 2822.78
L 0 0 -0.99752 2206.5 954.87
L -0.99997 -0.49887 0.49876 2051.4 1166.00
L -0.99997 0.49887 -0.49876 1849.1 703.87
L -0.49999 0 -0.49876 1752.7 770.87
L 0 0 -0.49876 1534.2 923.33
U 0.49999 0.49887 0.49876 1204.2 629.53
L 0 -0.99773 0 1105.6 622.93
U 0 -0.49887 0 659.7 210.35
U -0.49999 0.49887 -0.49876 641.2 197.34
L -0.49999 -0.99773 0.49876 624.8 165.17
U 0 0 -0.49876 622.3 161.56
L -0.49999 -0.49887 0 589.1 127.79
U 0 0 0 551.9 128.34
L -0.49999 -0.49887 0.49876 541.1 210.68
L 0.49999 -0.99773 -0.49876 535.7 168.92
U -0.49999 -0.49887 0.49876 522.9 142.40
L 0 0.49887 -0.49876 365.6 115.00
L -0.99997 0 0 354.8 111.54
L 0.49999 0 -0.49876 325.9 69.87
U -0.49999 0 0 292.2 85.33
U 0.49999 0 0 275.1 85.93
L 0.49999 -0.49887 -0.99752 257.9 94.70
L 0.49999 -0.49887 -0.49876 222.8 146.88
L -0.49999 0 0 220.9 83.20
L 0 -0.49887 0 210.3 60.69
U 0 0 0.49876 206.6 51.84
L 0.49999 0.49887 0.49876 158.3 43.76
L 0 0 0.49876 157.7 36.82
L 0.49999 0.49887 0 137.3 26.89
L 0 0 0 131.5 36.91
U 0 0.49887 0 129.8 36.86
L 0.49999 -0.49887 0 129.1 23.82
L -0.49999 0.99773 -0.49876 125.7 28.57
L 0.49999 0 0 122.4 44.82
L 0.99997 0 0 114.2 26.20
L -0.49999 0.49887 -0.99752 113.2 24.71
L -0.49999 0 0.49876 110.6 15.08
L 0 0 0.99752 109.1 19.74
L 0 0.49887 0 94.2 27.90
L -0.49999 0.49887 -0.49876 83.5 36.19
L -0.49999 -0.49887 0.99752 82.6 15.22
L 0.99997 0.99773 0.99752 75.9 18.20
L -0.49999 0.49887 0 72.9 13.58
L 0.49999 0.99773 0.49876 72.8 17.72
L 0 0.99773 0 66.8 17.62
L 0.99997 0.49887 0.49876 65.3 18.33
L 0 -0.49887 0.49876 65.3 13.57
L 0.49999 0.49887 0.99752 62.3 14.30
L 0 0.49887 0.49876 58.9 14.36
L 0.49999 0 0.49876 56.9 12.69
L 0.99997 -0.49887 -0.49876 40.7 15.65
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Table 3.11: CPLEX Results using Spearman Correlation Induction

Correlation Values Mean Standard Not
PeAS PCA2 PA A2 NODES Error Solved

0.99997 -0.99773 -0.99752 42945.3 14333.93 3
-0.99997 0.99773 -0.99752 38482.7 14423.24 3
-0.99997 0 0 33519.9 12393.77 2

0 0 -0.99752 25838.9 10735.01 1
-0.99997 -0.99773 0.99752 17667.7 3934.72
-0.99997 -0.49887 0.49876 17310.8 8920.90
-0.49999 -0.99773 0.49876 4032.9 2320.58
0.49999 -0.49887 -0.99752 2754.1 1501.03
-0.49999 0.49887 -0.99752 2368.1 781.46
0.49999 -0.99773 -0.49876 1977.2 648.52

0 -0.99773 0 1755.6 728.72
-0.99997 0.49887 -0.49876 1441.0 676.44
0.49999 0 -0.49876 1203.3 296.88
0.99997 -0.49887 -0.49876 989.5 214.62

0 0.49887 -0.49876 871.2 134.87
0 0 -0.49876 797.0 110.24

0.49999 -0.49887 -0.49876 660.7 117.69
-0.49999 0 -0.49876 591.6 123.42
0.49999 0.49887 0 545.3 88.25
0.49999 0 0 544.9 59.64

0 0 0 510.2 58.84
0.49999 -0.49887 0 481.8 83.92
0.99997 0 0 477.1 95.03
-0.49999 0.99773 -0.49876 474.9 87.02

0 -0.49887 0 473.3 48.62
0 0.49887 0 446.8 53.61

-0.49999 0.49887 -0.49876 428.0 56.26
0 -0.49887 -0.49876 416.0 69.71

0.49999 0.49887 0.49876 407.7 64.65
-0.49999 0 0 370.9 52.23

0 0 0.49876 367.7 47.56
0.99997 0.49887 0.49876 355.9 57.60

0 -0.49887 0.49876 352.3 49.64
-0.49999 -0.49887 0.49876 345.9 34.33
-0.49999 -0.49887 0.99752 342.6 40.79

0 0.99773 0 297.5 63.24
-0.49999 -0.49887 0 262.3 41.00

0 0 0.99752 237.2 57.48
0.49999 0.49887 0.99752 213.9 68.99

0 0.49887 0.49876 212.2 43.64
-0.49999 0.49887 0 204.5 37.19
0.49999 0 0.49876 189.8 33.10
0.99997 0.99773 0.99752 182.8 31.32
-0.49999 0 0.49876 145.4 29.24
0.49999 0.99773 0.49876 87.9 18.58
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several correlation structures listed in each table and those of the remaining cor-

relation structures. Not surprisingly, the correlation structures with the largest

average NODES include the unsolved problem instances (250,000 NODES for each

problem included in the average).

The ranked results in Tables 3.10 and 3.11 highlight patterns among the corre-

lation structures. Though the correlation structures listed at the top of Table 3.10

are Type L distributions, when both Type L and Type U distributions were avail-

able for a particular correlation structure, the Type U distribution yielded the

more difficult problems. There are more negative values of PA1A2 in the correlation

structures listed in the top portion of Tables 3.10 and 3.11 than in the bottom

portion. The potential influence of the individual correlation terms is examined in

the next subsection. Finally, challenging problems seem to have larger differences

between the values of each correlation terms within a correlation structure.

3.7.2 Individual correlation term influence

This experiment contains three subsets of design points in which each correlation

term is specified at all five design settings while the two remaining correlation terms

are zero. These subsets allow one to determine whether changes in that particular

correlation term influence CPLEX performance and which correlation terms have

the greatest relative influence. For each correlation term, a null hypothesis of no

influence was tested using the KW test. The test statistics and corresponding

p-values are provided in Table 3.12. For both correlation measures, the PCA2 and

PA1A2 terms have a significant influence on CPLEX performance, while the PCA'
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Table 3.12: Results of Kruskal-Wallis Tests on Each Correlation Term

Correlation Test Correlation Test
Term Statistic p-value Term Statistic p-value

P, 1.2304 0.873 S 4.5899 0.332
P S

Pc,A2 18.2345 0.001 PCA2 11.6578 0.020
fP1A2 14.1310 0.007 Pf1A2 13.6610 0.008

(a) Pearson Measure (b) Spearman Measure

term does not. A possible explanation is that the distribution for A' has a larger

mean and variance than the distribution for A 2 . The larger variance of A' then

produces a larger variance in the right-hand side coefficient for the first constraint,

bi, which in turn produces more problems with loose constraints. As will be shown

in the next subsection, loose constraints make for easier problems thereby reducing

the influence of the PCA1 term on CPLEX performance.

The lack of significance of pCA1 seems to conflict with Table 3.11 which lists S

(-0.99997, 0, 0) as a challenging correlation structure. The large average NODES

associated with this structure is due to the extremely difficult problems that result

when this structure is coupled with slackness setting (Si, S2) = (0.30, 0.70); average

NODES is 133,206 for these 5 problems. Interestingly, for the same correlation

structure when (S, S2) = (0.70, 0.30) average NODES is just 45. A KW test is a

ranks test that is not necessarily affected by such extreme data points. However,

this example demonstrates that constraint slackness settings likely represent a

significant influence on CPLEX.
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Table 3.13: Mean NODES by Constraint Slackness Setting

Si S2 Mean NODES Si S2 Mean NODES
0.30 0.30 3524.17 0.30 0.30 4290.87
0.30 0.70 3191.36 0.30 0.70 6307.78
0.70 0.30 2299.12 0.70 0.30 3110.35
0.70 0.70 335.34 0.70 0.70 1286.33

(a) Pearson Measure (b) Spearman Measure

3.7.3 Constraint slackness influences

Table 3.13 summarizes CPLEX performance by constraint slackness settings. Tight

constraints, and in particular a tight first constraint (i.e., Si = 0.3), seem to

produce the more challenging test problems. The data are grouped by slackness

settings for a KW test for a difference in CPLEX performance due to constraint

slackness setting. The KW test statistics of 76.76 for Pearson correlation test

problems and 235.07 for Spearman correlation test problems equate to p-values

of less than 1.0 x 10- i6 in each test. So, constraint slackness settings represent a

significant influence on CPLEX performance.

Notice the mean NODES in Table 3.13(a) and 3.13(b) for (Si, S2) = (0.30, 0.70)

and (Si, S2) = (0.70, 0.30) are quite different. The standard errors listed do not

suggest the means are different. However, by pairing observations with (Si, S 2) =

(0.30, 0.70) with the corresponding observations having (Si, S2) = (0.70, 0.30),

a sign test may be conducted for a null hypothesis of no difference in CPLEX

performance for mixed slackness settings. The sign test results are provided in

Table 3.14 for each correlation measure along with the a = 0.05 acceptance regions.
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Table 3.14: Sign Test Results for Performance Differences Between Mixed Con-
straint Slackness Levels

Correlation Total Total Acceptance
Measure di z 0 di > 0 Region p-value

Pearson Measure 273 177 (120,153) <0.0001

Spearman Measure 278 201 (123,155) <0.0001

The p-values indicate that, with a mixed constraint slackness setting, a tight first

constraint produces a more challenging problem. CPLEX performance appears

more sensitive to low S1 values than to low S2 values given mixed slackness settings

and the distributions specified for A1 and A2.

3.7.4 The interaction between correlation structure and
constraint slackness

The information contained in Tables 3.15 through 3.18 provide some insight into

the interaction between correlation and constraint slackness for each correlation

measure. Table 3.15 lists average NODES for each setting of PCA 1 and S, and for

each setting of PCA2 and S2. Regardless of slackness value, extreme negative corre-

lation between objective function and constraint coefficients yields problems that

challenge CPLEX. For the experiment design points selected, PA1A2 < 0 whenever

PCA' < 0 or PCA2 < 0. So the effect of negative pCA2 or PCA2, which conflicts with

other studies on similar types of problems, may be better attributed to PA1A2 < 0.

There is also a tendency for the combination of extreme positive correlation and a

loose constraint to yield problems that challenge CPLEX.
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Table 3.15: Interaction of Constraint Slackness and Correlation Type on Average
NODES

First Constraint Effects First Constraint Effects

P 1  S - 0.30 S1 = 0.70 S1 = 0.30 S1 = 0.70
-0.99997 19668.6 17803.9 -0.99997 40558.7 35594.5
-0.49999 575.2 208.0 -0.49999 815.0 804.3

0.0 3833.8 208.9 0.0 3427.7 377.9
0.49999 872.7 141.6 0.49999 1057.8 451.1
0.99997 82.4 11211.6 0.99997 1210.0 12271.4

Second Constraint Effects Second Constraint Effects

P'A 2  S2 = 0.30 S 2 = 0.70 PeA 2  S 2 = 0.30 S 2 = 0.70
-0.99773 14994.5 5693.8 -0.99773 19611.6 7739.9
-0.49887 5115.6 513.9 -0.49887 875.8 2819.8

0.0 625.6 390.5 0.0 3375.9 4111.3
0.49887 352.1 367.2 0.49887 694.0 559.8
0.99773 54.1 10182.5 0.99773 5286.8 10523.5

(a) Pearson Measure (b) Spearman Measure

Table 3.16 lists average NODES by slackness setting for each level of intercon-

straint correlation. Extreme negative correlation between constraint coefficients

yields challenging problems. The average NODES values are relatively high for

extreme positive values of PA1A2 when S1 = 0.30. With a mixed slackness setting

and extreme negative interconstraint correlation, the average NODES is also very

high. The "bump" in Table 3.16(a) for pA1 A2  -0.49876 and tight constraints

is caused by a particularly challenging design point, P = (0, -0.49887, -0.49876)

and (S1 , S2) = (0.30,0.30), for which two test problems were not solved in the full

250,000 NODES limit.

Space prohibits listing the performance averages for all 224 design points, so

Tables 3.17 and 3.18 list just the three design points at each extreme level of per-

formance. Notice the disparity of CPLEX performance between the design points
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Table 3.16: Average NODES by Inter-Constraint Slackness and Correlation

S1 =0.30 S= 0.70 S1 =0.30 S= 0.70

PP, A2 2 =0.30 2 =0.70 PS1A2 S2 =0.30 S2 =0.70
-0.99752 655.9 1337.1 -0.997752 33393.4 11110.9
-0.49876 10888.3 289.9 -0.49876 1564.7 483.4

0.0 497.1 177.4 0.0 975.2 307.7
0.49876 565.4 282.3 0.49876 520.4 266.7
0.99752 4954.9 177.7 0.99752 5315.4 200.0

S,= 0.30 S =0.70 S =0.30 S =0.70

PP1A2 S2-0.70 S2 =0.30 PAA2 S2 =0.70 S2 =0.30
-0.99752 20260.3 22367.2 -0.99752 22411.3 22995.7
-0.49876 655.5 204.4 -0.49876 690.3 614.7

0.0 191.2 302.6 0.0 7699.1 403.8
0.49876 648.3 188.67 0.49876 5225.6 1149.9
0.99752 11144.0 1193.1 0.99752 3954.4 5445.6

(a) Pearson Measure (b) Spearman Measure

listed in Tables 3.17(a) and 3.18(a) versus those in Tables 3.17(b) and 3.18(b).

Problems requiring more NODES involve negative correlation and tight constraints

while problems requiring less NODES involve primarily positive correlation values

and loose constraints. Further, it appears that problems with large differences

between the values of correlation terms require more NODES.

One way to generate a difficult 2KP instance is to induce extreme negative

correlation between the objective function and a tight constraint. Another ap-

proach to creating difficult problems is to induce negative correlation between

constraint coefficients, such as specifying either of the extreme correlation struc-

tures p = (0.99997, -0.99773, -0.99752) or p = (-0.99997,0.99773, -0.99752).

Conversely, one can create easier problems by avoiding any negative correlation in

the population correlation structure and making the constraints loose.
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Table 3.17: Design Points Requiring Most and Least Average NODES for Pearson
Correlation Problems

(a) Design Points Averaging Most NODES
pCAIP  PA 2  PA 2  S1 S2 Mean Std Error

0.0 -0.49887 -0.49876 0.30 0.30 119724.4 55912.53
0.99997 -0.99773 -0.99752 0.70 0.30 111466.4 55586.62

-0.99997 0.99773 -0.99752 0.30 0.70 100801.2 60914.42
(b) Design Points Averaging Least NODES

P P P
PCA1 PCA2 PA1A2 S1  S2 Mean Std Error

0.99997 0.49987 0.49876 0.70 0.30 3.8 1.96
0.49999 0.0 0.0 0.70 0.30 3.8 2.35
0.99997 -0.49987 -0.49876 0.70 0.30 4.4 2.16

Table 3.18: Design Points Requiring Most and Least Average NODES for Spear-
man Correlation Problems

(a) Design Points Averaging Most NODES

PCA1 PCA2 pA1A2 S 1  S2 Mean Std Error
0.99997 -0.99773 -0.99752 0.70 0.30 113852.0 56803.73

-0.99997 0.99773 -0.99752 0.30 0.70 103109.6 60021.89
0.0 0.0 -0.99752 0.30 0.30 99214.6 50753.77

(b) Design Points Averaging Least NODES

PCA1 PCA2 PAIA2 SI S 2  Mean Std Error
0.0 0.49987 0.49876 0.70 0.70 22.8 9.19

0.49999 0.99773 0.49876 0.70 0.70 23.0 18.03
-0.99997 0.0 0.0 0.70 0.70 27.6 20.08
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3.7.5 Regression models for NODES

This section describes the regression models fit to the experiment data to describe

the relationship between the experiment design factors and the performance mea-

sure NODES. These models were developed using a stepwise regression procedure

that maximizes the coefficient of determination, R2. The transformed response in

each model is the natural logarithm of NODES.

Define disparity, D, as the largest absolute deviation between any two of the

correlation terms. Table 3.19 lists the best regression model for each correlation

measure. For each term significant at the a = 0.05 level, the regression model

coefficient is provided, while p-values are provided for the remaining terms in the

model. Despite the transformation on NODES, both regression models have low

values for R2 .

The model for the Pearson measure is similar to that for the Spearman mea-

sure. There are ten significant factors in common, each significant term having the

same sign. The factor D is significant, supporting earlier observations regarding

its influence. The coefficient for the constraint slackness factor indicates that loose

constraints tend to reduce NODES. Also supporting earlier findings are the signif-

icant interaction terms on constraint slackness and correlation setting. Neither of

the PCA' and PCA 2 factors are significant, although the sign test previously found

PcA2 significant. This may be due to these terms being correlated with D, and the

interaction terms involving PcAi and PCA2 being significant factors in the model.
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Table 3.19: Regression Model of CPLEX Results
Pearson Measure Spearman Measure

LN(NODES) LN(NODES)
Source Coefficient p-value Coefficient p-value

Intercept 9.20 10.09
$, -9.02 -8.36
S2  -5.25 -5.67

PCA1  0.725 0.465
PCA2  0.637 0.323
PAIA2 -1.56 -1.25

D -1.89 -0.99
S x S2 10.61 10.24

S X PCAI 2.49 2.51
Sl X PCA2  -2.19 -1.15
S X PA1A2 0.583 0.149
S 2 X PCA1  -1.54 0.243
S2 X PCA2 1.83 1.63
S2 X PA2A2 1.48 1.25

PCA' X PCA2 0.152
PCA' X PA1A2 -0.82 0.181
PCA2 X< PA1A2 0.179 -1.95

SIx D 1.98
S2 x D 0.394

PCA1X D -0.51 0.105
PCA2X D 0.117 -0.77
PAIA2 X D 0.323 -0.41

R 2 = 0.216 R 2 0.255
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3.8 Analysis of heuristic performance

In this section, the influence of population correlation structure and constraint

slackness settings on TOYODA performance is examined. The measure of perfor-

mance for the analysis is REL. Two regression models are constructed to summarize

the influence of constraint slackness and correlation on TOYODA performance.

3.8.1 Correlation structure influence

Tables 3.20 and 3.21 summarize TOYODA performance by population correlation

structure for Pearson and Spearman problems, respectively. Past research has

shown that TOYODA generally provides very good solutions, and the results in

this study support this point. Although there is no drastic change between any two

consecutive correlation structures listed in the tables, there is a noticeable differ-

ence in REL averages and the standard errors between those correlation structures

at the top and those at the bottom of Tables 3.20 and 3.21. The PAlA 2 term ap-

pears to be a particularly important factor since the correlation structures with

the larger average REL values generally include negative values of PA1A2 while the

opposite holds for those correlation structures with smaller average REL values.

Independent sampling (p = (0, 0, 0), Type U in Table 3.20), does not appear to

provide particularly difficult problems. In fact the average REL with independent

sampling is at the mean and just above the median value of average REL over all

design points. Table 3.20 specifies REL by distribution type, Type L or Type U.
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When both distributions were available for a particular correlation structure, the

Type U distribution yielded the more difficult problems. This means Type U

distributions might be preferable for generating difficult 2KP problem instances.

Of the 2240 test problems generated, TOYODA found an optimal solution in

156. Tables 3.20 and 3.21 list the number of optimal solutions found for each

population correlation structure. A common feature among most of these corre-

lation structures is non-positive values for PCAi and PCA2 and non-negative values

for PAIA2. Consider the population correlation structure p = (-0.99997,-0.99773,

0.99752) listed at the bottom of Table 3.20 and near the top of Tables 3.10 and

3.11. This structure produces challenging test problems for the CPLEX procedure,

but for 37 of the 40 test problems generated with this correlation structure, TOY-

ODA found an optimal solution. This is interesting because the problems that are

challenging for one procedure may not be challenging for the other.

A formal test of no performance differences due to correlation structure is con-

ducted using the KW test on the data grouped by correlation structure. The KW

test statistics of 328.32 for Pearson correlation problems and 402.46 for Spearman

correlation problems have p-values near zero. So, the correlation structure is a

significant influence on TOYODA performance.

3.8.2 Individual correlation term influence

This experiment includes three subsets of design points in which each correlation

term is specified at all design settings while the two remaining correlation terms are

specified as zero. These subsets may be used to determine whether each particular
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Table 3.20: TOYODA Results using Pearson Correlation Induction

Correlation Values Mean Standard Solved to

Type PpA1 P~A2 P1A 2 REL Error CPLEX Value
U -0.49999 0.49887 -0.49876 2.04 0.407
U 0.49999 -0.49887 -0.49876 1.89 0.362
U 0.49999 0 0 1.74 0.314
U 0 0.49887 0 1.61 0.259
L 0 -0.49887 -0.49876 1.56 0.272
L 0 0 -0.99752 1.50 0.311 1
U -0.49999 0 0 1.45 0.331 1
L -0.49999 0.49887 -0.99752 1.31 0.196
U 0 -0.49887 0 1.28 0.281
L 0 0.49887 -0.49876 1.24 0.224
L 0 0.99773 0 1.22 0.171
L 0 0 -0.49876 1.21 0.348
L -0.49999 0.49887 -0.49876 1.20 0.242
U 0 0 -0.49876 1.03 0.205
L 0.49999 -0.49887 -0.99752 0.99 0.115
L -0.49999 0.99773 -0.49876 0.97 0.115 1
L 0 0.49887 0 0.91 0.140
L 0.49999 0 -0.49876 0.87 0.108
L 0 -0.49887 0 0.84 0.215
U 0.49999 0.49887 0.49876 0.82 0.121
U 0 0 0 0.77 0.132
L 0.49999 -0.49887 -0.49876 0.73 0.153
L -0.49999 0 -0.49876 0.73 0.129 2
L -0.49999 0.49887 0 0.72 0.083
L 0.49999 0.99773 0.49876 0.72 0.081
L -0.49999 0 0 0.70 0.095
L 0.49999 0.49887 0 0.70 0.082
L -0.99997 0.99773 -0.99752 0.70 0.051 1
L 0 0.49887 0.49876 0.66 0.089
U 0 0 0.49876 0.66 0.124 1
L 0.99997 -0.49887 -0.49876 0.64 0.061 1
L 0.99997 0 0 0.60 0.076 4
L 0.49999 0 0 0.57 0.045
L 0 0 0 0.56 0.053
L -0.49999 0 0.49876 0.54 0.088
L -0.99997 0.49887 -0.49876 0.53 0.067 3
L 0.99997 -0.99773 -0.99752 0.51 0.039
L 0 -0.99773 0 0.51 0.072 3
U -0.49999 -0.49887 0.49876 0.51 0.219 4
L 0.99997 0.49887 0.49876 0.50 0.049 2
L 0.49999 -0.99773 -0.49876 0.42 0.066 3
L 0.49999 -0.49887 0 0.41 0.042 2
L 0.49999 0.49887 0.49876 0.40 0.055
L -0.49999 -0.49887 0 0.39 0.073 2
L -0.99997 0 0 0.39 0.050 4
L -0.49999 -0.99773 0.49876 0.38 0.080 8
L 0 0 0.49876 0.36 0.051
L -0.49999 -0.49887 0.49876 0.36 0.064 3
L 0.49999 0 0.49876 0.36 0.038 1
L 0.99997 0.99773 0.99752 0.36 0.044 1
L 0 -0.49887 0.49876 0.35 0.034 1
L 0.49999 0.49887 0.99752 0.22 0.025 2
L -0.99997 -0.49887 0.49876 0.20 0.043 7
L -0.49999 -0.49887 0.99752 0.18 0.026 4
L 0 0 0.99752 0.16 0.022 2
L -0.99997 -0.99773 0.99752 0.00 0.000 20
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Table 3.21: TOYODA Results using Spearman Correlation Induction

Correlation Values Mean Standard Solved to
pcA pcA S pA 2  REL Error CPLEX Value

-0.49999 0.49887 -0.99752 3.29 0.325
0.99997 -0.49887 -0.49876 3.24 0.471 2
0.49999 -0.49887 -0.99752 3.15 0.342
-0.49999 0.99773 -0.49876 2.99 0.406 1

0 0.49887 -0.49876 2.77 0.359
-0.49999 0.49887 -0.49876 2.73 0.233
0.99997 0 0 2.64 0.451 1
0.49999 0.99773 0.49876 2.53 0.305
-0.99997 0.99773 -0.99752 2.48 0.425
0.49999 -0.49887 -0.49876 2.37 0.183

0 0.99773 0 2.35 0.337
0.49999 0 -0.49876 2.28 0.245
0.99997 -0.99773 -0.99752 2.24 0.419
0.99997 0.49887 0.49876 2.24 0.289

0 0.49887 0 2.14 0.213
-0.49999 0.49887 0 1.86 0.311
0.49999 -0.49887 0 1.75 0.314 1
0.49999 0 0 1.65 0.153
-0.99997 0.49887 -0.49876 1.64 0.281

0 0 -0.99752 1.63 0.226 1
0 0.49887 0.49876 1.60 0.312 2
0 -0.49887 -0.49876 1.53 0.191

0.49999 -0.99773 -0.49876 1.53 0.242
0.49999 0.49887 0 1.32 0.140 1
-0.49999 0 0 1.29 0.140
0.49999 0 0.49876 1.18 0.172

0 -0.99773 0 1.16 0.221 1
0 -0.49887 0 1.16 0.135

-0.49999 0 -0.49876 1.15 0.172
0 0 -0.49876 1.14 0.105 2

-0.99997 0 0 1.01 0.217
-0.49999 0 0.49876 0.75 0.129

0 -0.49887 0.49876 0.71 0.152 5
0.49999 0.49887 0.49876 0.69 0.053 1

0 0 0 0.69 0.048 1
0.99997 0.99773 0.99752 0.69 0.101 1

0 0 0.49876 0.61 0.087 2
-0.49999 -0.49887 0.49876 0.58 0.087 7
-0.49999 -0.49887 0 0.54 0.069 2
-0.49999 -0.99773 0.49876 0.46 0.085 1
0.49999 0.49887 0.99752 0.36 0.037
-0.99997 -0.49887 0.49876 0.36 0.074 6

0 0 0.99752 0.18 0.036 8
-0.49999 -0.49887 0.99752 0.16 0.023 5
-0.99997 -0.99773 0.99752 0.07 0.044 17
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Table 3.22: Results of Kruskal-Wallis Tests on Each Type of Correlation for REL

Type of Test Type of Test
Correlation Statistic p-value Correlation Statistic p-valuePs

PeA1 17.205 0.0018 PCA1 26.787 < 0.0001P S

PeA2 17.193 0.0018 PCA2 30.930 < 0.0001
PAIA2 43.79 < 0.0001 PAIA2 36.058 < 0.0001

(a) Pearson Measure (b) Spearman Measure

correlation term influences TOYODA performance and which correlation terms

have the greatest influence. For each correlation term, a null hypothesis of no

influence was tested using the KW test. The test statistics and corresponding p-

values are provided in Table 3.22. In each case the null hypothesis is rejected, and

the conclusion is that each correlation term influences TOYODA performance.

The test statistics for P1A2 and pA1A2 imply that each term is a particularly

significant factor influencing TOYODA procedure performance. As noted earlier,

many of the previous studies on MKP heuristics include TOYODA as a benchmark

procedure. Past research with induced correlation involves high positive values for

each of PCA1 and PCA2, which then implies a high positive value of PA1A2, such as

was the case in Balas and Martin (1980). However, this study finds that PA1A2 < 0

actually produces the more challenging test problems for TOYODA.

CPLEX and TOYODA results differ regarding the influence of the p1 and

PCAI terms. While neither term significantly influenced CPLEX, both strongly

influence TOYODA performance. This is reconciled by noting that TOYODA

transforms each 2KP so that bi = 1, i = 1, 2. Thus, the influence of the mean and

variance of A' in countering the influence of each correlation term is mitigated.
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3.8.3 Constraint slackness influence

Table 3.23 lists the average REL by constraint slackness settings. Clearly, (Si, S 2)

(0.30, 0.30) represents the most difficult type of problem for TOYODA in terms

of overall average REL. The differences among the other average REL values are

quite small, as are their standard errors. A KW test is used to test for a difference

in REL due to slackness setting. The KW test statistics of 192.09 for Pearson

correlation problems and 178.49 for Spearman correlation problems have p-values

near zero. So constraint slackness settings have a statistically significant influence

on TOYODA performance, which agrees with past research.

Unlike the results from CPLEX presented in Table 3.13 there does appear to be

a significant difference in REL values when (S1, S2) =(0.30, 0.70) as compared to

REL values when (S1 , S2) = (0.70, 0.30). Table 3.24 presents the sign test results

for each correlation measure when slackness settings are mixed, with the a = 0.05

acceptance regions for the test provided. These results indicate that when mixed

slackness settings are involved, and the problems are based on the Pearson measure,

a tight first constraint tends to be associated with more challenging problems. For

the problems based on the Spearman measure both mixed slackness settings yield

problems of about equal REL. However, because TOYODA normalizes each con-

straint, the interpretation of these results is not as straightforward as for CPLEX

results.

Past heuristic research has not addressed the influence of mixed slackness lev-

els. Balas and Martin (1980) use randomly generated slackness levels but do not

examine the effects of mixed levels on heuristic procedure performance.



97

Table 3.23: Mean REL by Constraint Slackness Setting

S 1  S2 Mean REL S1  S 2  Mean REL
0.30 0.30 1.53 0.30 0.30 2.95
0.30 0.70 0.42 0.30 0.70 0.95
0.70 0.30 0.58 0.70 0.30 1.00
0.70 0.70 0.54 0.70 0.70 1.10

(a) Pearson Measure (b) Spearman Measure

Table 3.24: Sign Test Results for Performance Differences Between Mixed Con-
straint Slackness Levels

Correlation Total Total Acceptance
Measure di 4 0 di > 0 Region p-value

Pearson Measure 273 162 (120,153) 0.0008

Spearman Measure 276 151 (122,154) 0.0520

3.8.4 The interaction between correlation structure and
constraint slackness

While previous studies have examined the influence of constraint slackness set-

tings, none have been able to examine the interaction between constraint slackness

settings and population correlation structure.

Figures 3.4 through Figure 3.7 plot average REL values for various slackness-

correlation combinations. In each plot, the correlation values on the X-axis are

rounded for ease of presentation. Figures 3.4 and 3.5 plot results for Pearson prob-

lems; Figures 3.6 and 3.7 plot results for Spearman problems. In the two plots

shown in both Figures 3.4 and 3.6, average REL values are plotted versus the cor-

relation value between coefficients of the objective function and each constraint,

for both tight and loose constraints. REL averages tend to vary directly with the

correlation values meaning that the more challenging problems have higher corre-
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lation values. At each correlation value, REL averages were lower for the larger

slackness values, which means that better solutions are found for problems with

looser constraints. Finally, the increasing differences between the REL values plot-

ted for increasing correlation values indicate there is an interaction effect between

the correlation and constraint slackness factors on TOYODA performance.

Figures 3.5 and 3.7 plot REL against the interconstraint correlation for tight

and loose slackness settings for Pearson and Spearman problems, respectively, The

trend is for decreasing values of PA1A2 to result in increasing average REL values. At

negative values of PA1A2 and (S1, S2) = (0.30, 0.30), there is quite a large difference

in average REL as compared to when (S1 , S2) = (0.70, 0.70). Finally, these plots

provide strong evidence of an interaction between correlation and the constraint

slackness setting.

Space prohibits listing the performance averages for all 224 design points, so

the three design points with the best and worst levels of performance are listed in

Tables 3.25 and 3.26. These results are what would be expected after examining

Figures 3.4 through 3.7. Both constraints being tight yields harder problems, par-

ticularly when combined with negative values of PA1A2. Test problems with the

worst REL averages have PCAI > 0, PCA2 > 0, and PAIA2 < 0. Within the corre-

lation structures for the easier problems, the largest absolute difference between

any correlation terms seems larger than in the correlation structure of the harder

problems. The influence of this phenomenon is examined later using a regression

model. Tables 3.25 and 3.26, though purposely not all inclusive, illustrate the

range of TOYODA performance, which is not so apparent in the data presented

in Tables 3.20 and 3.21.
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Table 3.25: Design Points with Extreme REL Averages for Pearson Correlation
Problems

(a) Design Points Averaging Worst REL
P P P

-PCA
1  PCA2 PA1A2 S 1  S2 Mean Std Error

-0.49999 0.49887 -0.49876 0.30 0.30 4.6 0.73
0.0 0.0 -0.99752 0.30 0.30 4.2 1.06
0.0 -0.49887 -0.49876 0.30 0.30 4.1 0.71

(b) Design Points Averaging Best REL
P P P T

PCA1 PCA2 PA1A2 S, S 2  Mean Std Error
-0.99997 -0.99773 0.99752 Any Any 0.0 0.0
-0.99997 -0.49887 0.49876 0.30 0.70 0.0 0.0
-0.99997 0.0 0.0 0.30 0.30 0.01 0.005

Table 3.26: Design Points with Extreme REL Averages for Spearman Correlation
Problems

(a) Design Points Averaging Worst REL
PSA1 PgA2 pA1A2 S S S2 Mean Std Error

-0.49999 0.49887 -0.49876 0.30 0.30 6.7 0.66
0.99997 0.0 0.0 0.30 0.30 6.4 1.32

0.0 0.49887 -0.49876 0.30 0.30 6.1 0.94
(b) Design Points Averaging Best REL

PCA1 PcA2 PA1A2 S1 S 2  Mean Std Error
-0.99997 -0.99773 0.99752 0.70 0.70 0.0 0.0
-0.99997 -0.99773 0.99752 0.30 0.70 0.0 0.0
-0.99997 -0.99773 0.99752 0.30 0.30 0.01 0.006
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3.8.5 Regression models for REL

Table 3.27 contains the regression models developed to describe REL in terms of

the experiment design factors. For these models, a "best" regression is defined

as the model maximizing the value of R2 . The disparity term, D, represents the

largest absolute deviation between any two correlation terms within the correlation

structure. The coefficients of the significant terms in the regression model are

indicated; p-values are provided for the insignificant terms included in the model.

Each model contains significant terms for both constraint slackness factors,

which agrees with the KW test results previously presented. Also significant are

the constraint slackness and objective function-constraint correlation interactions,

which is the trend seen in Figures 3.4-3.7. The D term is significant, as was the case

with the regression model for the CPLEX results. Comparing these models side-

by-side there are clear differences attributable to the type of correlation measure.

Although the regression models have nine common significant terms, and most of

these common terms agree in sign (8 of the 9), the magnitudes of most of these

terms differ.

Although the TOYODA heuristic provides generally good solutions across a

wide range of problems, the procedure is sensitive to variations in correlation struc-

ture and constraint slackness settings. With certain types of correlation structures

TOYODA provides excellent solutions. Of particular interest is the influence of

negative values of PA'A 2 and the interaction between constraint slackness settings

and values specified for the correlation terms in the correlation structure.



103

Table 3.27: Regression Model of TOYODA Results
Pearson Measure Spearman Measure

LN(REL) REL
Source Coefficient p-value Coefficient p-value

Intercept 3.46 6.61
S1  -5.23 -8.81
S2 -6.21 -9.27

PCA1 0.124 0.520

PCA2  0.608 1.05
PA1A2 0.165 -2.00

Disparity -0.90 0.69
S 1 X S 2  8.83 13.11

S1 X PCA' -2.49 -1.13
S1 X PCA2  1.83 0.113
S1 X pAIA2 0.180 0.77
S2 X PCA1 3.26 1.12
S2 X PCA2 -1.40 -1.32
S 2 X< PA2A2 0.761 0.80

PCA1 X PCA2 0.124 0.058
PCAI X PA1A2 0.908 0.361
PCA2 X PA1A2

S, x Disparity 0.229
S2 x Disparity 0.787 0.398

PCA1 x Disparity 0.31 0.32

PCA2 x Disparity 0.38 0.134
PA1A2 x Disparity 0.205 0.149

R 2 =0.477 R2 = 0.466
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3.9 Analysis of LP-IP Gap

The size of the LP-IP gap in an optimization problem is sometimes viewed as a

factor influencing the performance of solution procedures (Chang and Shepardson,

1982). Though not known in advance, by solving the test problems, one can

examine how the experiment design factors influence the size of the LP-IP gap.

The sign test is used to test the null hypothesis of no difference in LP-IP gap

value in synthetic test problems based on the type of correlation measure. This

is done by separating the problems by the correlation measure and then pairing

the problems by design point and replication number. The LP-IP gap was larger

for Spearman correlation-based problems in 875 of the 1120 pairings (16 pairings

were equal). The sign test results indicate that problems generated based on the

Spearman correlation structure have larger LP-IP gap values. Among the 201 test

problems for which the LP solution equaled the IP solution, only 51 problems were

generated using the Spearman correlation measure.

KW tests were used to test whether there were LP-IP gap differences due to

the individual correlation values within each correlation structure and whether the

constraint slackness settings matter. The results of these tests are presented in

Table 3.28. The constraint slackness setting is a very significant factor influencing

the size of the LP-IP gap for the test problems generated in this study. Problems
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Table 3.28: KW Test results for LP-IP Cap
Pearson Measure Spearman Measure
Test Test

Parameters Statistic p-value Statistic p-value

PCA1 28.45 < 0.0001 17.18 0.0017

PCA2 18.03 0.0012 14.89 0.0049

PA1A 2  15.22 0.0043 9.11 0.0584
Slackness 60.67 < 0.0001 78.60 < 0.0001

with tighter constraints tend to have larger LP-IP gap values. All the correlation

terms, with the exception of PA1A2 for Spearman problems, significantly influenced

the LP-IP gap. Among the three correlation terms, the PCA1 term seems to be the

most significant.

Although the LP-IP gap for synthetic optimization problems is unknown be-

forehand, the insight gained in this section could be useful when defining problem

generation parameters for examining solution procedure performance. This could

be particularly useful when proposed procedures, either exact or heuristic, rely on

LP relaxations during the solution process.

3.10 Discussion and Conclusions

This paper examined 2KP solution procedures using synthetic test problems gen-

erated based on a variety of correlation structures and constraint slackness settings

using both Pearson product-moment and Spearman rank correlation generation
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methods. Hooker (1994) states that an alternative to empirical studies with unrep-

resentative optimization problem sets, is to investigate "how algorithmic perfor-

mance depends on problem characteristics." This study shows that the correlation

structure among test problem coefficients and the type of correlation induced in-

fluence solution procedure performance on 2KP instances.

Not only does the correlation structure matter, but the correlation measure

affects solution procedure performance. Systematically varying the problem corre-

lation structure yields a more complete range of problems than independent sam-

pling does. Interconstraint correlation is shown to be a significant factor influencing

performance of solution methods. For a specified correlation structure, a Type U

composite distribution tends to produce a more difficult problem than a Type L

distribution. So, the level of independent sampling with a composition-based sam-

pling method affects solution procedure performance. Constraint slackness is an

established problem generation parameter but this study highlights the interaction

between constraint slackness and correlation structure. Finally, for some design

points, CPLEX performed poorly while TOYODA found the optimal solutions.

So, one must always be cautious about generalizing the results observed with one

solution method to other methods. Furthermore, this result indicates that dif-

ferent test problems may be appropriate for evaluating different types of solution

procedures.

There are several areas of further investigation. For instance, one could examine

other correlation induction methods, more constraint slackness settings, larger test

problems or problems involving more than two constraints. Another avenue could

examine various types of heuristics, such as was done by Zanakis (1977), or various
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optimization methods, to compare how the procedures react to particular test

problem parameter settings. In terms of optimization methods, one could easily

examine how problem generation parameters settings influence the effectiveness

of pre-processing routines such as valid cut generators, bounding procedures, or

problem reduction algorithms.
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CHAPTER IV

CONCLUSIONS AND DISCUSSION

Chapter 2 presents a new composition method for generating values of multivari-

ate random variables with explicit correlation induction. Several new concepts

are introduced during this development: correlation points, extreme-correlation

distributions, Type L and Type U composite distributions.

Using composite distributions for explicit correlation induction has several ben-

efits. Sampling is easy to implement since the constituent components of the com-

posite distribution, the extreme-correlation distributions, and the joint distribu-

tion under independence are easy to sample from. Many feasible correlation points

have an associated composite distribution, which combined with the applicability

of composite distributions to both continuous and discrete distributions, yields a

method with wide applicability. Finally, additional modeling flexibility is available

since for nearly all correlation points expressable as a composite distribution, there

is an entire range of joint distributions available.
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Chapter 3 applied composite distributions for trivariate random variables in

an empirical study of the 2KP. This study examined three problem generation

factors: the type of correlation, the correlation structure, and constraint slackness.

A heuristic and a branch-and-bound procedure were examined to determine how

performance is influenced by the problem generation factors.

The empirical study of the 2KP produced some exciting findings. The type

of correlation, Pearson product-moment or Spearman rank, leads to differences in

solution procedure performance. Each correlation term in the correlation struc-

ture and in particular the inter-constraint correlation term are significant problem

generation parameters. Previous studies have not isolated the effect of the inter-

constraint correlation. Mixed levels of constraint slackness are found to influence

solution procedure performance. Moreover, this empirical study highlighted the

synergistic effect between correlation structure and constraint slackness levels.

Many research opportunities could follow this effort. Some are mentioned in

Chapters 2 and 3, but there are others. For example, the influence of factors such

as the inter-constraint correlation on CPLEX performance might suggest new types

of algorithms that would be more effective on instances where current branch-and-

bound approaches fare poorly.
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